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■ Abstract Although we have a general understanding of the manner in which
individual stars form, our understanding of how binary stars form is far from complete.
This is in large part due to the fact that the star formation process happens very quickly
and in regions of the Galaxy that are difficult to study observationally. We review the
theoretical models that have been developed in an effort to explain how binaries form.
Several proposed mechanisms appear to be quite promising, but none is completely
satisfactory.

INTRODUCTION

This review of the ideas that have been put forward to explain the origin of binary
stars builds upon a foundation that has been laid by two earlier articles in this
Annual Review series: The first, published 15 years ago by Shu, Adams & Lizano
(1987), focused on a discussion of the origin of single stars; the second, published
8 years ago by Mathieu (1994), reviewed the observational evidence of binary
systems in the pre–main-sequence (PMS) stellar population. Because the ideas
presented in these two earlier reviews are essential ingredients to any discussion
of the origin of binary stars, I spend a bit of time recapitulating them, but lack
of space requires me to refer the reader to these articles for details. The task of
reviewing this topic has been considerably simplified because of the conference
that was held in April, 2000, on the topic of “The Formation of Binary Stars”
(Zinnecker & Mathieu 2001).

Background

Shu et al. (1987) have provided the following outline of the various stages of the
birth of single stars. The process begins with a molecular cloud, after its basic con-
stituent material has been assembled somehow and somewhere in a galaxy. The
cloud is gravitationally bound, but as a whole it is supported against gravitational
collapse by the presence of a magnetic field. Stage I: Via ambipolar diffusion, the
magnetic field slowly leaks out of relatively over-dense regions of the cloud, allow-
ing these regions to become more and more dense, relative to their surroundings.
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In this way, observationally identifiable “molecular cloud cores” are formed.
Stage II: The star formation process begins in earnest when a condensing cloud
core “passes the brink of instability” (Shu et al. 1987) and collapses dynamically
toward stellar densities. This leads to the formation of a central protostar embed-
ded within an infalling envelope of dust and gas. A disk almost always surrounds
the embedded protostar, reflecting the fact that molecular cloud cores are almost
always rotating. The protostar accretes matter, largely from the infalling cloud in
which it is embedded, but to some degree also from its surrounding disk. As it
contracts toward the main sequence, the protostar develops a stellar wind, which
initially is unobservable because “the ram pressure from material falling directly
onto the [proto]stellar surface suppresses breakout” (Shu et al. 1987). Stage III:
Gradually, direct infall onto the protostar’s surface weakens as incoming material
with relatively high specific angular momentum falls preferentially onto the disk.
The stellar wind is then able to break out in the direction of the system’s rotational
poles, creating an observable bipolar flow. Stage IV: The amount of material added
to the protostar via direct infall continues to decrease, and the opening angle of
the wind steadily widens until the young central star (along with its surrounding
nebular disk) is revealed as a bonafide PMS star—for example, a T Tauri star.
Stage V: Over time, the nebular disk finally disappears.

As Mathieu (1994) has reviewed, it is clear from an observational perspective
that the PMS stellar population is rich in multiple systems. The overall frequency
of occurrence of binary stars among the PMS population is at least as large as has
been documented for main-sequence stars (Duquennoy & Mayor 1991), that is,
certainly greater than 50%. Young, stellar-mass binary systems have been found
with semimajor axes ranging from 0.02 to 103 AU (orbital periods ranging from
a couple of days to 104 years), with a binary frequency distribution as a function
of semimajor axis that is qualitatively consistent with the log-normal–like distri-
bution found for main-sequence stars. With this evidence in hand, Mathieu (1994)
concluded that “binary formation is theprimarybranch of the star-formation pro-
cess.” Also, it seems clear that the process (or processes) responsible for creating
binary stars generally exerts its influence before stage IV. These realizations have
led to an increased effort over the past decade to understand from a theoretical
perspective how binary star systems form.

In the eight years since Mathieu compiled his review, significant advances
have been made in the techniques and instrumentation that are available to iden-
tify and study binary stars that have a wide range of orbital periods, mass ra-
tios, and ages. These include HST (WFPC2 & NICMOS) imaging (Padgett et al.
1997, 1999; Reid et al. 2001), submillimeter imaging (Smith et al. 2000), optical
and infrared long-baseline interferometry (Quirrenback 2001a,b), millimeter and
submillimeter interferometry (Launhardt et al. 2000, Launhardt 2001, Guilloteau
2001), adaptive optics (Simon et al. 1999, Close 2001), Hipparcos astrometric
observations (S¨oderhjelm 1999; Quist & Lindegren 2000, 2001), and microlens-
ing (Alcock et al. 2001, Di Stefano 2001). A fair fraction of the increased ob-
servational activity in this arena certainly has been stimulated by the discovery
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of extrasolar planetary systems (Mayor & Queloz 1995; Marcy & Butler 1998,
2000). Although all of this work is important in establishing a database that can,
in the long run, be used to critically evaluate theoretical models proposed to ex-
plain how binary (and other multiple) star systems form, it is fair to say that,
at present, our understanding of process(es) by which binary systems form is
far too crude to take full advantage of the detailed information that is housed
in such a database. For the purpose of this review, it is sufficient to build our
discussion on the two broad conclusions drawn by Mathieu (1994): Stars pre-
ferentially form in pairs, and binary formation occurs prior to the PMS phase of a
star’s evolution.

Basic Physical Principles

Throughout this review, there is very little discussion of the role that magnetic
fields play in the star formation process. This stands in stark contrast to the earlier
review by Shu et al. (1987). The reasons for downplaying the role of magnetic
fields here are twofold. First, although there is a considerable body of evidence
[see the discussion by Shu et al. (1987)] supporting the conclusion that the inter-
stellar magnetic field significantly influences the onset of gravitational collapse in
molecular clouds, the general consensus is that the field will largely decouple from
a contracting cloud at number densities&1010cm−3 because, at such high densities,
the fractional ionization of the gas becomes extraordinarily small. Because, as is
emphasized below, the processes likely to be responsible for transforming single
gas clouds into binary protostellar systems largely operate at densities higher than
this limit, neglect of the magnetic field is justified. Second—and largely justified
by the first—researchers who have focused their modeling efforts on the binary
star formation problem generally have ignored the effects of magnetic fields, so
a review of this body of work must naturally downplay the influence of magnetic
fields as well. We return to the issue of the influence that magnetic fields have on
the onset of collapse in “Summary and Conclusions,” below.

By ignoring the effects of magnetic fields, we in practice (although not in
spirit) depart somewhat from the storyline presented by Shu et al. (1987) and
summarized above. Specifically, when the text of the earlier review refers to a
cloud core that has “passed the brink of instability” and thereby entered stage II
of the star formation process, it is referring to a critical physical condition in the
cloud core that is established, in part, by the strength of the cloud’s magnetic field.
We instead use this phrase to refer to the classic thermal Jeans instability (see the
relevant definition in “The Jeans Instability,” below). Even in the case in which
the effects of magnetic fields are considered, of course, the Jeans instability is
relevant, but it may establish only a necessary rather than sufficient condition for
collapse.

PHYSICAL PARAMETERS We characterize a protostellar gas cloud or protostar by
its total massM and radiusR, its mean temperatureT and mean molecular weight

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 2

00
2.

40
:3

49
-3

85
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

A
PE

S 
on

 0
4/

25
/0

6.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



25 Jul 2002 19:35 AR AR166-AA40-10.tex AR166-AA40-10.SGM LaTeX2e(2002/01/18)P1: GJC

352 TOHLINE

µ, and its mean angular velocityω. FromM, R, andµwe can determine the cloud’s
mean mass density,

ρ̄ ≡ 3M

4πR3
, (1)

and its corresponding number density,

n = ρ̄

µmp
, (2)

wheremp is the mass of a proton. We also specify that, upon compression, the
cloud’s temperature varies with its density as

T ∝ ρ̄γ−1, (3)

whereγ is the effective adiabatic exponent of the gas. It is understood thatγ

itself is likely to be a function of the cloud’s density (see the discussion below in
association with Figure 2). FromT/µ andγ , the mean sound speed of the gas can
be determined via the expression,

cs =
[
γ
<T

µ

]1/2

, (4)

where< is the gas constant.
As Shu et al. (1987) have reminded us, star formation is a complex process

that spans many orders of magnitude in mass and linear scale. If, following Shu
et al., we concentrate on aspects of the problem that occur on scales ranging from
that of a giant molecular cloud to the shortest period PMS binaries (e.g., Table
A2 of Mathieu 1994), then we have to deal with systems having masses in the
range of 106&M/M� & 1 and linear scales in the range of 1020 cm& l & 1012 cm
(that is, 30 pc& l & 10 R�). The bottom diagram in Figure 1 illustrates this range
of length scales, with the lettersGMC drawn on the left to mark the size of a
giant molecular cloud and the letterB drawn near the right to mark the scale
(orbital separation) of a PMS binary star with an orbital period of only a couple
of days. The letterP in this diagram marks the linear scale of our own plane-
tary system (40 AU, as set by the orbit of Pluto), which lies between the two
extremes. Rotationally flattened disks of this size or larger are now almost al-
ways found in association with the youngest binary or single PMS stars. As a
point of reference, the top diagram in Figure 1 illustrates that a comparable range
of length scales takes us from the present scale of the universe (marked byU
on the diagram), through the size of a typical galaxy (marked byG), to the size
of a typical globular cluster (marked byGC). This comparison of scales serves
to emphasize the complexity of the problem at hand. That is, we should not be
surprised to find that the process by which binary stars form from molecular
clouds in our Galaxy is at least as difficult to understand and to model uniquely as
the process by which globular clusters form from an homogeneous and isotropic
universe.
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Figure 1 Two scales that, together, cover over 40 orders of magnitude in length. They
stretch from the scale of the universe (U at the left-hand edge of top scale), through
our Galaxy (G) to the scale of an individual globular cluster (GC); and from the scale
of a giant molecular cloud (GMC), through our planetary system (P) down to the scale
of the shortest period pre–main-sequence binaries (B) and the radius of the Sun (S).
Along the bottom scale we have also indicated the angular resolutionθkpc (in arcsec)
that is required to resolve a system of radiusRat a distance of 1 kpc. Notice that there is
roughly the same separation between the scale of the universe and the size of individual
GCs as there is between the scale of a GMC and the shortest period binary systems.

At a distancedkpc (measured in kiloparsecs) from the solar system, an object
of linear scaleRAU (measured in astronomical units) will subtend an angleθkpc

(measured in seconds of arc) given by the expression,

θkpc = 10−3 RAU

dkpc
. (5)

Hence, as the top scale in the bottom diagram of Figure 1 indicates, at a distance
of 1 kpc a 40-AU disk will subtend an angleθkpcof 40 milli-arcseconds on the sky;
at this same distance a resolution of a tenth of a milli-arcsecond or better would
be required to spatially resolve the shortest period PMS binaries.

Figure 2 illustrates the range of densities and temperatures that a stellar-mass
gas cloud must traverse as it contracts from a molecular cloud state toward a struc-
ture (on the zero-age main sequence) that is hot enough and dense enough to fuse
hydrogen. For purposes of illustration, the solid curve identifies the approximate
ρ−T path that is expected to be followed by the central-most region of a nonrotat-
ing (spherically symmetric) protostellar cloud containing a total massM∼ 1–3 M�
(drawn from Figure 3 of Tohline 1982 and Figure 27.3 of Kippenhahn & Weigert

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 2

00
2.

40
:3

49
-3

85
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

A
PE

S 
on

 0
4/

25
/0

6.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



25 Jul 2002 19:35 AR AR166-AA40-10.tex AR166-AA40-10.SGM LaTeX2e(2002/01/18)P1: GJC

354 TOHLINE

Figure 2 The evolutionary trajectory (solid curve) of the central region of a proto-
stellar gas cloud is shown in the temperature-density plane. (Patterned after Figure 3 of
Tohline 1982.) The slope of each segment of the curve is indicated by the value of the
effective adiabatic exponentγ , as defined in Equation 3. The density is shown both in
g cm−3 (bottom horizontal axis) and in cm−3 (top horizontal axis); the temperature is
given in degrees Kelvin. Also shown along the top of the plot is the orbital period of a
binary system that has the equivalent mean density, as determined through Equations
10 and 6. For reference, lines of constantMequil, as defined by Equation 22, have been
drawn at values of 1 M� (dashed), 10−1 M� (dotted), and 10−2 M� (dash-dot); the
vertical gap between temperatures of 2,000 K and 10,000 K signifies that the molecular
gas is being dissociated and ionized; hence,µ changes from 2 (lower section of each
line) to 1/2 (upper section of each line).

1990; see also Figure 2 of Winkler & Newman 1980, Figure 3 of Boss 1984, and
Figure 1 of Bate 1998). Various segments of this curve have been labeled with
the value of the effective adiabatic exponentγ that governs the illustratedρ−T
relationship, as defined above by Equation 3.

KEY TIMESCALES From ρ̄, cs, ω, andR, we can derive three key timescales: The
free-fall time,

τff =
[

3π

32Gρ̄

]1/2

, (6)
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where,G is the gravitational constant; the sound-crossing time,

τs = R

cs
; (7)

and the rotation period of the cloud,

τrot = 2π

ω
. (8)

When discussing binary star (or binary protostellar) systems, a fourth relevant
timescale is the binary’s orbital period,

P =
[

4π2a3

GMtot

]1/2

, (9)

whereMtot is the total mass of the system, anda is the system’s semimajor axis
[for circular orbits,a is the distance between the two stars (or protostars)]. Notice,
however, that the orbital period is not much different from the free-fall time, in the
following sense. If a gas cloud of radiusR and massM is transformed (by some,
as yet, unspecified mechanism) into a binary star system of massMtot=M and
separationa=R, then by Equations 9 and 6 the binary will have an orbital period,

P = 321/2τff ≈ 5.7τff . (10)

Because, as shown by Equation 6, the free-fall time of a gas cloud (or protostar)
depends only on the cloud’s mean mass density, Equation 10 suggests that the
measured orbital period of a binary system tells us something directly about the
density of the gas cloud from which the binary system formed. With this in mind,
the top horizontal axis in Figure 2 has been labeled with the binary orbital period
that corresponds to the mean mass density that is given along the bottom horizontal
axis of the figure.

Also by way of illustration, Table 1 lists the values of some relevant physical
parameters at a variety of different scales that should be of interest to researchers

TABLE 1 Scales of interest

Porbit [years] nH2 [cm−3] ∆v/∆θkpc [km s−1/arcsec] a [AU] for 1 M�

380000 3× 105 0.04 5200

20000 1× 108 0.75 740

3800 3× 109 3.7 250

1000 4× 1010 15. 100

300 5× 1011 50. 45

100 4× 1012 150. 20
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searching for evidence of protostellar binary systems in molecular clouds. For
example, a binary system that forms from an environment in which the mean cloud
densitynH2 ∼ 3× 105 cm−3 should have an orbital periodP∼ 4× 105 years and
should exhibit a velocity gradient on the sky1v/1θkpc∼ 0.04 km s−1/arcsec [e.g.,
the properties of the Bok Globule CB230 described by Launhardt et al. (2000)].
If this system contains 1 M� of material, the separation of its binary components
will be ∼5200 AU, which at a distance of 1 kpc will subtend an angle ofθkpc

∼ 5.2 arcsec. A bound system with an orbital period of∼1000 years, however, must
form in an environment that has a much higher mean density,nH2∼ 4× 1010cm−3.
It should exhibit a significantly higher velocity gradient on the sky,1v/1θkpc∼
15 km s−1/arcsec, but will subtend a much smaller angle on the sky: At 1 kpc, a
1 M� system should haveθkpc∼ 0.1 arcsec.

Finally, we should mention the accretion timescale,

τaccrete= m0

Ṁ
, (11)

which gives the time that it takes an equilibrium structure (e.g., the central core
of a collapsing cloud) of massm0 to double in mass as it accretes material from a
surrounding cloud or disk at a ratėM . Over intervals of time that are short compared
to τ accrete, the mass of the central structure remains relatively unchanged, so the
central structure can be considered dynamically isolated from its surroundings.
The accretion rateṀ varies from situation to situation, but in discussions of the
free-fall collapse of protostellar gas clouds, two rates are of particular interest.
The first comes simply from the ratio of a cloud’s total mass to its initial free-fall
time,

Ṁ ff = M

τff
. (12)

The second is the accretion ratėMsis highlighted by Shu (1977) that arises from
the collapse of the so-called singular isothermal sphere,

Ṁsis= c3
s

G
. (13)

IMPLICATIONS OF THE VIRIAL THEOREM FromM andRwe obtain the following
estimate of the configuration’s total gravitational potential energy,

Egrav∼ −3

5

GM2

R
. (14)

FromM andT/µ we obtain an estimate of its total thermal energy via the expres-
sion,

Etherm∼ 3

2

<
µ

MT. (15)
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The configuration’s rotational kinetic energy is

Erot = 1

2
Iω2 = 1

2

J2

I
∼ 1

5
MR2ω2, (16)

whereI ≈ 2
5MR2 is the configuration’s principal moment of inertia andJ= Iω is

its total angular momentum. From the virial theorem (e.g., Hansen & Kawaler
1994), we know that the following relationship between these three global energy
reservoirs must hold if a protostellar gas cloud (or protostar) is in equilibrium:

2(Etherm+ Erot)+ Egrav= 0 (17)

or

α + β = 1

2
, (18)

where

α ≡ Etherm

|Egrav| ∼
5

2

<
µ

T
R

GM
, (19)

β ≡ Erot

|Egrav| ∼
1

3

R3ω2

GM
. (20)

If a cloud (or protostar) is in equilibrium but is not rapidly rotating (β� 1/2),
according to Equations 18 and 19,α≈ 1/2 and its mass must be related to its
radius and mean temperature via the expression

Mequil ∼ 5
<
µ

T
R

G
. (21)

Using Equation 1, we can alternatively express this equilibrium mass in terms of
the cloud’s mean density and temperature as follows:

Mequil ∼ 5.5

[<
µ

T

G

]3/2

ρ̄−1/2. (22)

For reference, lines of constantMequilhave been drawn in Figure 2 at values of 1 M�
(dashed), 10−1 M� (dotted), and 10−2 M� (dash-dot); the vertical gap between
temperatures of 2000◦K and 10,000◦K signifies that the molecular gas is being
dissociated and ionized, henceµ changes from 2 (lower section of each line) to
1/2 (upper section of each line). (The lines have a slope of 1/3 in this log-log plot.)
Combining Equation 21 with Equations 1, 4, 6, and 7, this statement of equilibrium
also means that the sound-crossing time and the free-fall time are approximately
equal to one another in the cloud (or protostar), that is,

τs ≈ τff . (23)

On the other hand, if a cloud’s equilibrium state is balanced against gravity
largely by rotation (α� 1/2 andβ ≈ 1/2), then the virial theorem states that the
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cloud’s mean angular velocity will be near its maximum allowable value,

ω ≈ ωmax≈ [2πGρ̄]1/2; (24)

that is, the cloud’s rotation period will be

τrot = 2π

ω
≈ 4.6τff . (25)

Not surprisingly, this is essentially equal to the orbital period of a binary system that
has a separationa=R and the same total mass, as discussed above in connection
with Equation 10.

THE JEANS INSTABILITY If, for a givenM,R,T/µ, andω, one finds thatα+β <1/2
in a protostellar gas cloud, then the cloud will collapse on a free-fall timescale. In
the absence of rotation, this condition (α <1/2) is simply a statement that

M > Mequil (26)

and, hence, that the cloud has encountered the classic Jeans instability (Jeans 1919).
In this context, Equations 21 and 22 given above forMequil also serve to define the
familiar Jeans mass,MJ; that is to say,

MJ ∼ 5
<
µ

T
R

G
∼ 5.5

[<
µ

T

G

]3/2

ρ̄−1/2. (27)

When the mass of a molecular cloud or cloud core exceeds this critical mass, it
has “passed the brink of instability” and entered stage II of the star formation
process (Shu et al. 1987. For example, at 10◦K a uniform-density, 1 M� molecular
gas cloud will encounter this Jeans instability at the point markedA in Figure 2
(ρ̄= 1.8× 10−18 g cm−3) (see Table 2). As it collapses, it will evolve (to the right
in Figure 2) to configurations of higher density and smaller radius.

TABLE 2 Typical conditions in collapsing cloud core (see Figure 2)

Case ρ [g/cm3] T [◦K] γ µ 1
γ

c2
s [cm2/s2] Mequil [M �] jmax [cm2/s]

A 1.8× 10−18 10 1 2 4.2× 108 1 3.6× 1021

B 1.0× 10−13 10 7
5 2 4.2× 108 0.004 1.5× 1019

C 5.7× 10−8 2000 1.15 1 1.7× 1011 0.05 8.3× 1018

D 1.0× 10−3 8.7× 103 5
3

1
2 1.4× 1012 0.008 5.1× 1017

E 1.2× 101 4.6× 106 5
3

1
2 7.7× 1014 1 2.6× 1018
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Notice that the mass of a cloud can be expressed very simply in terms of the
Jeans mass and the dimensionless energy parameterα as follows:

M = MJ

2α
. (28)

Therefore, if a protostellar gas cloud collapses from a state in whichα is only
slightly less than 1/2, that is equivalent to saying that the cloud’s mass is only
slightly greater than one Jeans mass initially. In this case, one can show (see,
for example, the discussion associated with Equation 23 of Shu et al. 1987) that
the relevant accretion timescaleτ accretecan be derived from the accretion rate
defined by either Equation 12 or 13. That is to say, the model of a collapsing
singular isothermal sphere is relevant (Larson 1969, Penston 1969, Shu 1977) and
Ṁ ff ≈ Ṁsis. If, however,α� 1/2 initially, then the cloud initially encloses many
Jeans masses and is well past the brink of instability. (One might fairly ask how
the cloud was brought to such a drastic state in the first place. See “Summary
and Conclusions,” below.) In this case, the singular isothermal sphere solution
becomes irrelevant and the appropriate accretion timescale must be estimated from
Equation 12.

THE IMPORTANCE OF THE EFFECTIVE ADIABATIC EXPONENT γ Once a cloud en-
counters the Jeans instability, it will evolve dynamically until it acquires a new con-
figuration in which virial equilibrium is achieved, that is, until the sum
(α+β) climbs up to the value 1/2. We can therefore estimate how far a given
cloud will collapse before it settles into an equilibrium state by examining how
the two energy ratiosα andβ scale with the cloud’s radius or mean density. As-
suming that the cloud’s massM and angular momentumJ are conserved during its
dynamical collapse, Equations 1, 16, and 20 give

β ∝ R−1 ∝ ρ̄1/3, (29)

and Equations 3 and 19 give,

α ∝ TR∝ ρ̄γ−4/3. (30)

Equation 30 identifies the critically important role that the effective adiabatic
exponent plays in star formation. According to this expression, ifγ <4/3, the
energy ratioα actually decreases during a collapse. Therefore it is impossible
for thermal pressure alone to stop the cloud’s free-fall collapse as long as the
cloud evolves through a density-temperature regime where the effective adiabatic
exponentγ <4/3, such as the isothermal (γ = 1) regime illustrated in the left-hand
portion of Figure 2. This is why in models of spherically symmetric collapse (e.g.,
Larson 1969, Winkler & Newman 1980) the cloud’s free-fall is not slowed until
its central-most region reaches a density∼10−13 g cm−3 (the point markedB in
Figure 2) and starts to become opaque to the cloud’s primary cooling radiation.
Quoting directly from Larson (1969), “. . . the heat generated by the collapse in
this region is then no longer freely radiated away, and the compression becomes
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approximately adiabatic” with an effective adiabatic exponent (γ ≈ 7/5) that is
greater than 4/3.

Thus, in a spherically symmetric cloud, a minimum of two conditions must be
met before a stable equilibrium configuration can be achieved:α= 1/2, that is,
M=Mequil; andγ >4/3. In Figure 2, the segments of the (solid) evolutionary track
for which a stable equilibrium is possible are the segments for whichγ >4/3. On
each of these segments the mass required to achieve an equilibrium (α= 1/2) is
given by the value of the (dashed, dotted, or dash-dot) Mequil line that intersects
the evolutionary track. For example, at the point markedB in Figure 2, equilibrium
will be achieved with a mass∼4× 10−3 M�. This is why the first core that forms
in the collapse models of Larson (1969) and Winkler & Newman (1980) contains
only a very small fraction of the cloud’s total mass—only a few Jupiter masses!

Notice that a spherically symmetric cloud that contains an entire solar mass of
material can achieve virial equilibrium in only two places along the evolutionary
track shown in Figure 2: at the point markedA [at a very low density and tem-
perature (¯ρ∼ 1.8× 10−18 g cm−3, T∼ 10 K)] or at the point markedE [at a very
high density and temperature (¯ρ∼ 12 g cm−3, T∼ 5× 106 K)]. The only stable
configuration is the high-density one because it resides on a portion of the evolu-
tionary track for whichγ >4/3. Thus, once the Jeans instability is encountered (at
point A), the dynamical collapse must proceed on a free-fall timescale—through
almost 19 orders of magnitude in density—to a star-like configuration. A central,
low-mass core will form along the way (as in the models of Larson 1969 and
Winkler & Newman 1980) only if the collapse proceeds in a nonhomologous
fashion (see “Nonhomologous Collapses,” below).

The free-fall collapse of a rotating cloud can be halted at much lower densities
because, as shown by Equation 29,β always increases as the cloud contracts.
Hence, even during the isothermal phase of a cloud’s contraction, virial balance can
be achieved whenβ grows to a value of (1/2−α). Hence, there will be a tendency
for β to climb up to a value∼1/2 during the phase of isothermal contraction
because, for the cloud as a whole,α will drop to a very small value.

Once again, though, virial equilibrium alone does not guarantee a configuration
that is stable against further collapse. As in the nonrotating case just described,
an additional condition involving the effective adiabatic exponent must be met for
stability. According to the detailed stability analysis of nearly spherical systems
presented by Ledoux (1945; see also the discussion associated with Figure 3 in
Tohline 1984), the condition for stability is,

γ > γcrit ≈ 2

3

(2− 5β)

(1− 2β)
. (31)

Whenβ→ 0, this expression produces the value ofγ crit= 4/3 that is familiar
for spherically symmetric, nonrotating gas clouds. Whenβ 6= 0, this expression
shows thatγ crit is somewhat less than 4/3. However, according to Equation 31,
a rotating, isothermal (γ crit= 1) gas will not be stable against further radial collapse
unlessβ >1/4. Complementary analyses of equilibrium structures by Hayashi
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et al. (1982), Tohline (1984), and Hachisu & Eriguchi (1985) have confirmed
that rotationally flattened, axisymmetric, isothermal gas clouds are stable against
dynamical collapse (or expansion) only ifβ & 0.25–0.3.

Possible Formation Mechanisms

The mechanisms proposed for forming binary stars can be divided into three broad
categories. First, it is possible that Jeans-unstable gas clouds preferentially collapse
to form single stars; then, after formation, the stars become bound together in pairs
via a process usually referred to as “capture.” Second, either during or immediately
after its free-fall collapse, an individual rotating gas cloud may spontaneously
break into two pieces that are in orbit about one another. In this process, which we
refer to as “prompt fragmentation,” the cloud’s original spin angular momentum
is converted fairly directly into orbital angular momentum of the binary system.
Third, the central-most regions of a rotating gas cloud may collapse to form an
equilibrium configuration that is initially stable against fragmentation. Then, as this
relatively dense core contracts toward the main sequence while accreting relatively
high specific angular momentum material from the outer regions of the cloud, the
core (or its surrounding accretion disk) may encounter an instability that leads to
the formation of a binary system. We refer to this process as “delayed breakup.”

CAPTURE

It is possible that binary stars form by the relatively simple mechanism of capture.
That is to say, it is possible that stars preferentially form as single objects along
the lines described by Shu et al. (1987), then after formation become grouped
together in bound pairs through dynamical encounters. As Clarke (1992) has re-
viewed, though, the formation of a binary from two initially unbound stars requires
the dissipation of some fraction of the energy of their relative orbit. In favorable
three-body encounters, the energy lost from the relative orbit of the two stars can
be transferred as kinetic energy to a third star. Although rare, such encounters can
significantly influence the evolution of the central-most regions of globular star
clusters (e.g., Portegies et al. 1997). But this cannot be the mechanism responsible
for the formation of most binary systems in large clusters or in the field because the
frequency of such favorable encounters is extremely low. Also, in large virialized
clusters, the typical velocity of approach of unpaired stars is unfavorably hyper-
bolic. Whereas this is less of a problem in smaller N-body systems, simulations
show that purely gravitational encounters yield relatively few binaries per cluster,
and these binaries tend to form from the most massive stellar components of a
cluster (Clarke 1992, Valtonen & Mikkola 1991).

Two-body encounters can result in the formation of a binary system from an ini-
tially unbound pair if the interaction is not purely gravitational. For example, orbital
energy can be converted into heat through the excitation of tides in one or both stars.
However, significant tides are raised only during very close encounters—which
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require relatively special initial conditions—and in the absence of strong tides
many encounters are required to dissipate a significant amount of energy. Hence,
this traditional tidal capture mechanism is unlikely to explain how young, PMS
binaries are formed. In protostellar environments, however, the material that re-
sides in the extended disks around young stars (or protostars) can also be tidally
disturbed during an encounter and thereby absorb a portion of the orbital energy.
Larson (1990) estimated that a large fraction of all stars might be incorporated
into binaries through this mechanism during the PMS phase. Subsequent detailed
investigations have shown, however, that even when disks are included to enhance
the cross-section for collisions, tidal capture still does not work effectively enough.
Typically the velocities of encounter are sufficiently large that they disrupt the disk
(Clarke & Pringle 1993). It appears, therefore, that in all but the smallest virial-
ized clusters, star-disk capture cannot be responsible for the formation of most
binaries.

PROMPT FRAGMENTATION

Prompt fragmentation is the binary formation process that has received by far the
most attention over the past two decades. This is in large part due to the relative
capabilities and limitations of the numerical tools that have been employed to study
binary star formation. Binary fragmentation is, by definition, a nonlinear process
that exhibits no simple geometric symmetries. To model such a process in the midst
of a free-fall collapse therefore requires a fully three-dimensional, nonlinear hydro-
dynamical simulation with adequate spatial resolution. Smoothed-particle
hydrodynamic (e.g., Lucy 1977, Benz 1991, Monaghan 1992) and finite-difference
hydrodynamic (e.g., Boss & Mayhill 1992, Truelove et al. 1998) techniques have
both been successfully employed to study various aspects of this problem. With
either of these techniques the system is advanced forward in time via an explicit
(rather than implicit) integration of the time-dependent equations that govern the
evolution of self-gravitating fluids. Hence, both techniques are constrained by
the Courant-Freidrichs-Lewey condition (Courant et al. 1928; see also p. 45 of
Roache 1976) to take time steps that are very small compared with the physi-
cal system’s sound-crossing time, free-fall time, and rotation period. This means
many integration time steps are required to model fragmentation, even for sys-
tems that fragment promptly. Then when you consider how many grid cells (in
finite-difference hydrodynamic techniques) or particles (in smoothed-particle hy-
drodynamic techniques) are required to adequately resolve a fragmentation event
(Truelove et al. 1997, 1998; Whitworth 1998), it becomes clear that each modeled
event requires a very large amount of computing resources. With these available
simulation tools it is usually impractical to examine mechanisms that might lead
to the breakup of a cloud only after a significant evolutionary delay (see discussion
in “Delayed Breakup,” below).

Many different groups have utilized three-dimensional hydrodynamical tech-
niques to study the early, approximately free-fall phase of the collapse of rotating,
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Jeans-unstable gas clouds in an effort to see whether prompt fragmentation occurs.
Generally an isothermal (γ = 1) equation of state has been assumed because, as
illustrated in Figure 2, that is what appears to be appropriate for the early phases of
collapse (Boss & Bodenheimer 1979, Tohline 1980, Boss 1980, Bodenheimer et al.
1980, Różyczka et al. 1980, Gingold & Monaghan 1981, Wood 1982, Miyama et al.
1984, Monaghan & Lattanzio 1986, Bonnell et al. 1991, Burkert & Bodenheimer
1993, Sigalotti 1997, Truelove et al. 1998, Tsuribe & Inutsuka 1999). However,
some attempts have been made to include the effects of adiabatic compression and
heating at intermediate densities (Boss 1986, Myhill & Kaula 1992, Bonnell &
Bate 1994b, Bate 1998, Tsuribe & Inutsuka 2000) or to focus just on the likelihood
of prompt fragmentation in adiabatic collapse regimes (Boss 1981, Arcoragi et al.
1991). Before reviewing what has been learned about prompt fragmentation from
these investigations, it is useful to summarize the general behavior of a cloud’s
collapse based on some of the general principles outlined above in “Basic Physical
Principles.” For clarity, we use the subscriptcl to identify global properties of the
cloud that do not change with time, such as the cloud’s total massMcl and total
angular momentumJcl and the subscript (or sometimes superscript)i to denote the
initial properties of the cloud at the onset of its collapse.

Nearly Homologous Collapses

If a rotating cloud begins to collapse from a spherical or spheroidal configura-
tion that is uniform in density and whose massMcl is significantly larger than the
local Jeans massMi

J—that is, from a configuration in whichαi� 1/2—then the
cloud collapses fairly homologously. On a free-fall timescaleτ i

ff governed by its
initial mean density ¯ρi , the cloud evolves through a sequence of flatter and flatter
configurations, not unlike the collapsing pressure-free spheroids modeled some
time ago by Lynden-Bell (1962, 1964), Lin et al. (1965), and Hutchins (1976).
Indeed, because the ratio of thermal to gravitational energyα drops during the
isothermal phase of collapse (see Equation 30), the local Jeans mass also steadily
decreases and the cloud more and more closely approximates a pressure-free
spheroid.

As the cloud’s evolutionary timet approaches one initial free-fall timeτ i
ff and

its degree of flattening becomes most extreme, pressure gradients build to the point
at which they are able to decelerate the collapse—at least in the vertical direction.
If the cloud’s angular momentumJcl is sufficiently large, this deceleration of the
collapse will occur while the cloud is still in the isothermal phase of its contraction.
As a result (see the discussion in “The Importance of the Effective Adiabatic
Exponentγ ,” above), the cloud will necessarily be very flat andβ will have grown
to a value close to 1/2. If the cloud’s total angular momentum is relatively small,
the cloud can enter an adiabatic phase of its contraction before the collapse begins
to decelerate. In this case as well, however, the homologously collapsing cloud is
destined to be very flat when the deceleration occurs becauseα will have dropped
to a very small value during the cloud’s earlier, isothermal phase of contraction.
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Using Equation 29, one can estimate the radial size (and the mean density) of such
a flattened configuration (Tohline 1981, Hachisu & Eriguchi 1985).

Note that in a homologously contracting cloud, virtually all of the cloud’s mass
reaches the final, flattened configuration at approximately the same time. That is, at
approximately one free-fall time, the accretion rateṀ becomes very high, but there
is not an extended phase of accretion thereafter. The early, spherically symmetric
simulation by Narita et al. (1970) presents a nonrotating analog to this type of
evolution; the collapse started from a configuration in whichαi was relatively
small, and after a central equilibrium core formed, the core experienced only a
brief period of relatively rapid accretion (and a correspondingly high accretion
luminosity).

Nonhomologous Collapses

If, on the other hand, a cloud begins to collapse from a configuration that is fairly
centrally condensed and/or the cloud initially is only marginally Jeans unstable
(that is,αi . 1/2), then the collapse proceeds in a nonhomologous fashion. The
central region of the cloud collapses ahead of the rest of the cloud, producing a steep
central density gradient. If the cloud is initially centrally condensed, this happens
because, at every position in the cloud the timescale for collapse is governed by the
“local” free-fall time; regions of higher mean density have shorter free-fall times,
so the central region runs away from the rest (e.g., Section 3.2 of Tohline 1982). If
the cloud is only marginally Jeans unstable initially, this happens becauseτ i

s ≈ τ i
ff

(see the discussion associated with Equation 23). A rarefaction wave propagating
in from the edge of the cloud reaches the cloud center in approximately one free-fall
time and establishes a relatively steep density gradient in its wake (Bodenheimer &
Sweigart 1968, Larson 1969, Penston 1969).

As a result, a relatively small volume of material at the core of the cloud will
have an opportunity to find an equilibrium configuration first (locally, at least,
α + β ≈ 1/2), then that configuration will change with time as material (and
angular momentum) from the rest of the cloud accretes onto the core. However, as
explained above in “The Importance of the Effective Adiabatic Exponentγ ,” as
long as the core remains isothermal it will be unable to settle into an equilibrium
state without the aid of rotation. If there is enough angular momentum in the
cloud’s core, the core’s collapse can be stopped by rotation in the isothermal
phase; in this case the first equilibrium core will necessarily exhibit a large value
of β. Otherwise, the cloud’s core must contract to a density regime (see Figure 2)
in whichγ >4/3 before it finds its initial equilibrium configuration. In either case,
owing to the nonhomologous nature of the collapse, the first equilibrium core will
contain a relatively small fraction of the entire cloud’s mass, and an extended period
of mass accretion will follow the core’s formation. The early spherically symmetric
simulation by Larson (1969) presents a nonrotating analog to this type of evolution.

It is important to note that the key timescales associated with the first equilibrium
core (τ ec

ff , τ ec
s , andτ ec

rot) all generally will be very short compared with the initial
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free-fall timeτ i
ff of the cloud and, hence, short compared with the core’s accretion

timescaleτ ec
accrete. This is because, as shown in “Key Timescales” and “Implications

of the Virial Theorem,” above, all three of these key timescales are shorter in higher
density configurations, and the density of the collapsed core ¯ρec is necessarily
higher (usually much higher) than the cloud’s original mean density ¯ρi . (See Table 1
and the uppermost axis of Figure 2 for values of the dynamical timescale—
specifically, the orbital period—that correspond to various density regimes.) For
example, the first core that formed in Larson’s (1969) simulations had a mean den-
sity that was approximately 5 orders of magnitude higher than the cloud’s initial
density, so the core’s sound-crossing time and local free-fall time were roughly
2.5 orders of magnitude shorter than the cloud’s initial free-fall time. Therefore,
in a dynamical sense, the core will be relatively isolated from its surroundings. If
the core is found to be unstable toward the development of a dynamical instability
(characterized by an e-folding time that is of order the local free-fall timeτ ec

ff ),
this instability has an opportunity to manifest itself and even grow to nonlinear
amplitude before the core is significantly influenced by further accretion from the
surrounding cloud material.

Does Prompt Fragmentation Occur?

All of the three-dimensional hydrodynamical simulations that have been conducted
to date to investigate prompt fragmentation in collapsing protostellar gas clouds
support the following conclusion: Fragmentation does not occur during a phase
of free-fall collapse. If fragmentation occurs at all, it happens only after one ini-
tial free-fall time, that is, after the cloud—or at least the core of the cloud—has
collapsed into a rotationally flattened, quasi-equilibrium configuration (see dis-
cussion below). This finding argues strongly against the idea of “hierarchical”
fragmentation that was proposed by Hoyle (1953) to explain how clusters of stars
might form in less than a free-fall time. At first this result was somewhat surprising
because linear stability analyses of the pressure-free collapse of spherical (Hunter
1962, Mestel 1965) and spheroidal (Silk 1982) gas clouds lent some support to
Hoyle’s idea. However, as numerical simulations have become more and more
refined (e.g., Truelove et al. 1998; Bate 1998; Tsuribe & Inutsuka 1999, 2000),
this result has been repeatedly reaffirmed. The presence of finite gas pressure and,
more to the point, nonzero gas pressure gradients in a collapsing protostellar gas
cloud is apparently what makes all the difference. (See Section 7 of Tohline 1982
for a more exhaustive discussion of this issue.)

On the other hand, multidimensional collapse simulations have shown that frag-
mentation of a rotating gas cloud can occur immediately after the cloud (or at least
the cloud’s core) has settled into its first rotationally flattened, quasi-equilibrium
configuration. As Tsuribe & Inutsuka (1999, 2000) have summarized, fragmen-
tation seems to occur relatively easily in clouds that have collapsed in a nearly
homologous fashion; in contrast to this, simulations of nonhomologous collapses
generally have not resulted in prompt fragmentation. Attempts have been made to
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develop a formula (in terms of the cloud’s initial values ofαi andβ i, for example)
that readily predicts under what specific circumstances prompt fragmentation will
or will not occur (Tohline 1981, Hachisu & Eriguchi 1984, Miyama et al. 1984,
Tsuribe & Inutsuka 2000). Generally speaking, these attempts have met with only
marginal success. This is, perhaps, not surprising considering that hydrodynamical
flows can be extremely sensitive to initial conditions and that the available para-
meter space for initial cloud conditions is huge. For a given choice ofαi andβ i,
for example, one can select different initial radial density profiles, distributions of
angular momentum, geometries for the cloud (e.g., spherical, oblate, prolate), am-
plitude and shape of nonaxisymmetric perturbations, degrees of internal turbulent
motions, and influences from an external environment. In addition, it has become
clear that the end results can depend sensitively on numerical resolution—to the
extent that many of the simulations of strictly isothermal collapse carried out prior
to 1997 may have produced misleading results (Truelove et al. 1997, 1998; Boss
et al. 2000).

All in all, though, the general conclusions drawn by Tsuribe & Inutsuka (1999,
2000) are likely to remain intact. They make sense on simple physical grounds.
When the initial conditions are chosen in such a way that a cloud is able to col-
lapse in a nearly homologous fashion, fluctuations that contain more than oneMJ

of material can amplify to some degree during the collapse (Hunter 1962). Fur-
thermore, the cloud as a whole will evolve to an equilibrium configuration that is
highly susceptible to the further growth of these, if not other, nonaxisymmetric
perturbations: The parameterα is very small, so the configuration contains many
Jeans masses;β is so high that the configuration is likely to be unstable to one
or more global, nonaxisymmetric instabilities, akin to the unstable modes that are
present in Maclaurin spheriods (see discussion, below), and the Toomre Q para-
meter (Toomre 1964) is likely to be very small, making the rotationally flattened
configuration susceptible to the same types of instabilities observed in galaxies.

On the other hand, a nonhomologous collapse discourages fragmentation. Even
during a phase of isothermal collapse the development of radial pressure gradients
retards the growth of fluctuations (Hunter 1962). Because the first equilibrium
core that forms will contain only a small fraction of the total cloud mass,α will
be relatively high in the core, so it will be much less susceptible to the growth of
nonaxisymmetric perturbations of the types just mentioned.

Are Binaries the Result?

Although numerical simulations have demonstrated that the free-fall collapse of a
rotating protostellar gas cloud can produce a flattened configuration that is suscep-
tible to prompt fragmentation, it is not yet clear how often this process will directly
produce a binary system (as opposed to producing a larger number of fragments,
for example). The outcome may be sensitive to the spectrum of fluctuations present
in the initial cloud state. Even when it seemed likely from early calculations that
some specific sets of initial conditions would directly produce binaries, the results
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are being called into question (Tsuribe & Inutsuka 1999, Boss et al. 2000). More
importantly, owing to the constraints imposed by present numerical schemes, few
simulations have been able to follow an individual cloud’s evolution very far
beyond the initial instant of fragmentation. For example, published results that
purport to show the formation of a binary virtually never follow the binary through
even one full orbit. It is therefore impossible to deduce (a) whether either (or both)
of the components will undergo an additional fragmentation event, (b) whether or
not the components will subsequently merge, or (c) how any subsequent phase of
accretion will affect the parameters of the binary (e.g., period, eccentricity, mass
ratio). We clearly still have a lot to learn about the relationship between prompt
fragmentation and the formation of binary stars.

DELAYED BREAKUP

As discussed above, the dynamical collapse of a Jeans-unstable, rotating gas cloud
may often end with the formation of an equilibrium configuration that is stable
against fragmentation. This is especially true of collapses that occur in a non-
homologous fashion. Even when prompt fragmentation occurs, the individual frag-
ments may initially be found to be stable against further fragmentation. We should
then investigate whether, through its subsequent “slow” evolution toward the main
sequence, such a configuration will become susceptible to breakup and thereby
produce a binary system.

This equilibrium configuration (hereafter, referred to as a “core” or referenced
by the subscript “ec”) will be rotating, although not necessarily rapidly; it generally
will contain only a small fraction of the cloud’s total mass (remember that the first
core that formed in Larson’s 1969 nonrotating models contained only a few Jupiter
masses of gas); and it may or may not initially be surrounded by a rotationally
supported (accretion) disk. For the purpose of discussion, we will assign to this
core a massmec�Mcl, an equatorial radiusRec, a mean temperatureTec, and a
mean angular velocityωec. From these quantities we can, in turn, determine many
other key properties of the core—such asρecandβec—via the expressions given in
“Basic Physical Principles,” above.

In the context of this discussion of delayed breakup, the phrase “slow evolution”
is intended to convey the idea that the core is no longer in free-fall collapse and that
its overall structure is not changing significantly on a free-fall timeτ ec

ff , as measured
by the core’s mean density. Keep in mind, however, that this evolution may still
be fast compared with the cloud’s initial free-fall timeτ i

ff because ¯ρec� ρ̄i . In the
absence of significant nonaxisymmetric distortions, the core’s evolution should be
driven primarily by the same two processes that have been found to be important
in spherically symmetric models of cloud collapse: radiation loses and accretion
(see, for example, the detailed description provided by Winkler & Newman 1980).
Both processes cause the mean density and the mean temperature of the core to
steadily rise, along an evolutionary trajectory like the one displayed in Figure 2.
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In the case of a rotating core it is clear by Equation 29 that as the core’s density
increases,βec increases as well.

The core’s massmec will steadily increase through accretion of material that
is either falling directly in from the cloud or migrating in from a surrounding
disk. The core’s total angular momentum will steadily increase as a result of
accretion as well. Normally, the accretion process will add relatively high specific
angular momentum material to the core because there is a natural tendency for
the cloud’s low specific angular momentum material to accumulate in the core
first. Accretion will therefore tend to increase the ratio of the core’s rotational
to gravitational energy,βec, faster than one would have expected from the core’s
contraction alone. And if the core is not initially surrounded by a disk, one will
almost certainly develop as a result of direct infall from the cloud (see Cassen &
Moosman 1981, Terebey et al. 1984, and Section 4.1.3 of Shu et al. 1987).

In the following subsections, we examine the stability of an equilibrium core
as it undergoes slow evolution of the type described above. Then we examine the
stability of the accretion disk that surrounds such a core. More specifically, we
examine whether nonaxisymmetric instabilities might arise in either the core or its
accompanying disk that would lead to the “delayed breakup” of the protostellar
cloud into a binary star system.

Nonaxisymmetric Instabilities in Rapidly
Rotating, Equilibrium Cores

As a result of accretion and radiation losses, a rotating equilibrium core will
contract and become more rapidly rotating, in the sense thatβec will steadily
increase. When discussing the stability of such a system, it is useful to refer to
a diagram, such as the one presented here in Figure 3 (see also Figure 15 of
Chandrasekhar 1969 and Figure 1 of Durisen & Tohline 1985), in which one
can identify rotating ellipsoidal configurations of any shape. In particular, for an
ellipsoid with principal axes (a1, a2, a3) and rotation about itsa3-axis, the ordinate
of Figure 3 (a3/a1) specifies the object’s degree of rotational flattening, and the
abscissa (a2/a1) specifies the degree of the configuration’s equatorial ellipticity.
For example, the point in the upper right-hand corner (marked by anS) identifies
a sphere; points along the right-hand, vertical axis (passing fromS through the
points markedM2 and O2) identify flattened, axisymmetric (oblate spheroidal)
configurations; the curves connecting pointsS, M2, andO2 to the origin identify
sequences of more and more distorted ellipsoids.

Strictly speaking, Figure 3 can be used to accurately identify the properties of
ellipsoidal figures of equilibrium that arise only for uniform-density objects with
velocities that are linear functions of the coordinates. In this context, the right-hand
vertical axis represents the sequence of uniformly rotating, Maclaurin spheroids,
and the three curves connecting the Maclaurin sequence to the origin specify certain
subsets of the general class of Riemann ellipsoids. We have adopted the conventions
used by Chandrasekhar (1969) and Lebovitz (1974) in labeling key bifurcation
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Figure 3 A phase-space diagram for ellipsoidal configurations with principal axis
lengths (a1, a2, a3). Figures are rotating about thea3-axis. The right-hand vertical axis
represents the sequence of rotationally flattened Maclaurin spheroids (a2= a1). The
three curves connecting this vertical axis to the origin represent three separate sequences
of Riemann S-type ellipsoids: USA, the upper self-adjoint (x=−1) sequence; JD,
the Jacobi-Dedekind sequence; LSA, the lower self-adjoint (x=+1) sequence. Key
bifurcation points along the Maclaurin sequence are labeled byM2 andO2. Along the
Jacobi ellipsoid sequence, bifurcation points to the pear-shaped (p) and dumbbell (db)
sequences are also marked. The data used to construct this plot has been drawn directly
from Chandrasekhar (1969).

points along the Maclaurin sequence and in labeling the key ellipsoidal sequences:
USA is the upper (x=−1) self-adjoint series of Riemann S-type ellipsoids; it
branches off of the Maclaurin sequence atβ = 0.JD refers to the Jacobi-Dedekind
sequence; it bifurcates from the Maclaurin sequence atβ = 0.1375.LSA is the
lower (x=+1) self-adjoint series of Riemann S-type ellipsoids; it bifurcates from
the Maclaurin sequence atβ = 0.2738. In a less formal way, however, it also is
useful to refer to Figure 3 when discussing the evolution of less idealized (e.g.,
centrally condensed and differentially rotating) configurations that more closely
resemble real protostellar cloud cores.

In the context of Figure 3, a slowly contracting cloud core will move down along
the right-hand vertical axis from, e.g., point 1 toward the bifurcation point marked
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M2. However, the cloud core will be unable to become arbitrarily flat and maintain
an axisymmetric structure. Stability analyses (e.g., Lyttleton 1953, Chandrasekhar
1969, Tassoul 1978, Durisen & Tohline 1985) tell us that after reaching a critical
degree of flattening (that is, a critical value ofβec) the cloud will begin to distort
into a rotating bar-like (ellipsoidal) configuration that has a lower total energy.

CLASSICAL VIEW OF FISSION If the equilibrium core’s contraction occurs on a
timescale that is long compared with the viscous dissipation timescale of the gas,
then the core will begin to deform into a triaxial configuration when it acquires
the degree of flattening identified by the point identified asM2 in Figure 3, that is,
once the rotational energy of the core climbs to a value ofβec≈ 0.14. Thereafter,
further contraction should drive the evolution along the JD sequence toward, for
example, point 2 in Figure 3. As the cloud evolves beyond this point on the JD
sequence and becomes even more elongated, stability analyses tell us that it will
become susceptible toward even higher-order figure deformations. In particular,
as Lyttleton (1953) has reviewed, from the nineteenth and early twentieth century
works of Poincar´e, Darwin, Liapounoff, Jeans, and Cartan, it has been known
for over 100 years that ellipsoids along the JD sequence become susceptible to a
pear-shaped deformation at the point marked p in Figure 3; and these ellipsoids
are susceptible to a dumbbell-shaped deformation at the point marked db. More
recently, Eriguchi et al. (1982) have explicitly demonstrated that a sequence of pear-
shaped configurations and a sequence of dumbbell-shaped configurations bifurcate
at the points p (a2/a1= 0.432;a3/a1= 0.345;β = 0.1268) and db (a2/a1= 0.297;
a3/a1= 0.258;β = 0.1863), respectively. Very early on, the realization that a pear-
shaped sequence branches off of the Jacobi sequence “gave rise to the notion that
if the mass were stable and evolved by equilibrium forms along this [pear-shaped]
series, with the furrow continually deepening as the figure elongated, the final
result would be two detached masses rotating in circular orbital motion about each
other” (Lyttleton 1953, p. 3). This is the classical formulation of the “fission”
theory of binary star formation.

It is discouraging to realize that, more than 100 years after its formulation,
the full, nonlinear evolutionary scenario that underpins this classical theory of
fission has never been fully tested. That is, to date, nobody has evolved a uniform-
density, uniformly rotating ellipsoid slowly along the JD sequence to see whether
it spontaneously deforms into a pear-shaped configuration and then whether the
slow contraction of the “pear” leads to its breakup. There are, however, a number
of reasons why the astrophysical community has decided that this classical fission
scenario will not work.

First, it has been determined by stability analyses that ellipsoids are dynami-
cally (rather than secularly) unstable toward the pear-shaped deformation at all
points beyond point p on the Jacobi (JD) sequence (Lyttleton 1953). Hence, any
attempt to slowly evolve a configuration beyond this critical point of bifurcation
will almost certainly cause the configuration to depart rapidly from the desired
sequence of uniformly rotating pears. Second, the sequence of pear-shaped con-
figurations discovered by Eriguchi et al. (1982) shows no sign of developing a
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“deepening furrow,” but rather, terminates by equatorial mass-shedding. Third, it
is now generally accepted that the viscosity of protostars is too low for viscous
dissipation to drive evolution along the JD sequence (Lynden-Bell 1964, Lebovitz
1974) in the first place. That is, the contraction of protostellar cloud cores almost
certainly occurs on a timescale that is short compared with the viscous dissipation
timescale. For these reasons the classical theory of fission has been abandoned as
an explanation of how binary stars form.

LEBOVITZ’S REVISED VERSION OF THE FISSION THEORY With a thorough under-
standing of the classical theory’s shortcomings, Lebovitz (1974, 1984) has pro-
posed a revised formulation of the classical fission hypothesis. It parallels the
classical theory in that the rotating cloud core slowly contracts along a sequence
of axisymmetric (or at least approximately axisymmetric) spheroids; then, at a
critical degree of flattening, the evolution shifts to a family of more and more
elongated ellipsoids. The difference is that Lebovitz considers the evolution of
inviscid configurations (acknowledging the idea that contraction times are short
compared with viscous times). As a result, the relevant bifurcation point off of
the axisymmetric spheroidal sequence is the point markedO2 in Figure 3, and
the relevant ellipsoidal sequence is the one labelled LSA. Instead of following an
evolutionary trajectory that progresses from point 1 in Figure 3 to a point on the
JD sequence, the core will evolve as an axisymmetric structure through the loca-
tion labeledM2, continuing to flatten until it reaches the bifurcation point marked
O2. At this point (βec≈ 0.27) the equilibrium core will deform into an ellipsoidal
structure and, upon further contraction, it will evolve along the sequence labeled
LSA toward, for example, point 3 in Figure 3.

As explained by Lebovitz (1974, 1984, 1989), this evolutionary scenario po-
tentially avoids all of the objections that have been raised in the context of the
classical fission hypothesis. First, it does not matter that the viscous timescale is
long compared with the contraction timescale in protostellar clouds because defor-
mation into an ellipsoidal configuration occurs in the absence of viscosity. Second,
on the direct LSA sequence (see Lebovitz 1974) the order of the points p and db
are reversed from their positions on the JD sequence, so by evolving along this
sequence the cloud can avoid altogether problems that might be associated with
third-harmonic (pear-shaped) instability. Because Eriguchi & Hachisu (1985) have
shown that dumbbell-binary sequences do exist and that they bifurcate smoothly
from sequences of Riemann ellipsoids, it is tempting to suggest that further slow
contraction of the equilibrium core will drive it smoothly along a dumbbell se-
quence to a binary configuration. This is the essence of Lebovitz’s revised version
of the fission theory.

A number of questions remain to be answered before the viability of Lebovitz’s
revised theory can be properly assessed. Most importantly, it has not been demon-
strated whether bifurcation from the relevant ellipsoidal sequence to a dumbbell
sequence occurs stably and, if it does, whether continued slow contraction of the
configuration will actually proceed smoothly to a binary configuration, as envi-
sioned by Eriguchi & Hachisu (1985).
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Direct Breakup from an Axisymmetric State

Both the original and revised version of the fission hypothesis of binary star forma-
tion have grown out of the expectation that a slowly contracting, equilibrium cloud
core will deform from an axisymmetric structure into a triaxial (bar-like) config-
uration that is dynamically stable. Fission is hypothesized to occur only after this
triaxial configuration has undergone further slow contraction. These ideas have not
been fully tested in the context of realistic protostellar clouds largely because it
has not been possible to construct equilibrium models of rapidly rotating, triaxial
configurations with realistic (compressible) equations of state. In the absence of
such equilibrium models, we cannot even begin to examine the critical questions
of stability that are at the root of these two fission hypotheses. (As discussed in
“Slow Contraction of a Rapidly Rotating Ellipsoid,” below, some relief to this
situation may be forthcoming.)

However, we do have the tools in hand to construct equilibrium models of
rapidly rotating, axisymmetric configurations with realistic equations of state and
a wide variety of different distributions of angular momentum (e.g., Hachisu 1986).
Over the past 15 years a considerable amount of work has been directed toward
understanding the stability properties of these axisymmetric systems (Tohline et al.
1985, Williams & Tohline 1987, Luyten 1990, Pickett et al. 1996, Toman et al. 1998,
Shibata et al. 2000). Through these studies, for example, it has been determined
that virtually all axisymmetric configurations are dynamically unstable toward the
development of a “barmode” structure ifβec≥ 0.27. This finding overlaps well
with the classical stability analysis of Maclaurin spheroids, wherein a bifurcation
to the LSA sequence of Riemann ellipsoids occurs atβ = 0.2738 (the point marked
O2 in Figure 3). It is in this sense that Figure 3 provides a useful context in which to
discuss the evolutionary trajectories of slowly contracting, protostellar gas clouds
even though it was originally constructed from studies of much simpler (e.g.,
uniform density, incompressible) equilibrium structures.

In addition, hydrodynamical codes (like the ones developed to study the prompt
fragmentation problem) have been used extensively to determine whether or not the
nonlinear development of this barmode instability results directly in the breakup
of an equilibrium cloud core (Tohline et al. 1985, Durisen et al. 1986, Williams &
Tohline 1988, Pickett et al. 1996, New et al. 2000, Cazes & Tohline 2000, Brown
2000). The initial model used in these investigations generally has been a structure
that sits on the axisymmetric sequence and just beyond the point (markedO2 in
Figure 3), where inviscid systems are expected to evolve dynamically away from an
axisymmetric structure—that is, starting from a point like point 4 in Figure 3. From
all of these investigations, the unanimous consensus is that breakup does not occur
(see Tohline & Durisen 2001 for a recent overview). Instead, within a few rotation
periodsτ rot the cloud core generally deforms into a bar-like structure with a slight
two-armed spiral character; gravitational torques quickly facilitate a local redis-
tribution of angular momentum within the core (Imamura et al. 2000); a relatively
small amount of high specific angular momentum material is shed in the equatorial
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plane; and the core settles down into a dynamically stable, roughly ellipsoidal bar
that is spinning about its shortest axis. As Cazes & Tohline (2000) discussed in
detail, when viewed from a frame rotating with this bar, it is clear that the structure
is very robust and supports nontrivial internal motions. In a qualitative sense, the
bar resembles a Riemann ellipsoid with a structure similar to the one identified by
point 3 on the LSA sequence in Figure 3. Hence, Cazes & Tohline (2000) referred
to the configuration as a “compressible analog of a Riemann Ellipsoid.”

These nonlinear investigations of the development of the bar-mode instability
from initially axisymmetric configurations also have been categorized as “fission
studies” (e.g., Durisen & Tohline 1985). Because there is unanimous agreement
that such evolutions do not lead directly to the formation of a binary system, there
has been a broad pronouncement that the fission hypothesis is dead (Boss 1988,
Bodenheimer et al. 1993, Bonnell 2001). This pronouncement seems premature,
however. Neither the classical fission theory nor the revised one proposed by
Lebovitz predicted that fission would occur directly from an instability that arises
in axisymmetric configurations. Instead, as summarized above, the expectation
was that a slowly contracting, equilibrium cloud core would deform first into a
triaxial (bar-like) configuration. Fission should then occur only after the triaxial
configuration undergoes further slow contraction past a point at which the structure
becomes unstable to a higher-order surface distortion.

Slow Contraction of a Rapidly Rotating Ellipsoid

It has proven difficult to critically evaluate this last step of the classical or revised
fission hypothesis because few models of equilibrium, triaxial configurations exist
for systems with a physically relevant, compressible equation of state. A limited
set of rigidly rotating, polytropic bars have been constructed for very slightly
compressible fluids (Vandervoort & Welty 1981, Ipser & Managan 1981, Hachisu
& Eriguchi 1982), but focusing on Lebovitz’s scenario in particular, no one has yet
figured out how to routinely construct compressible models of rotating ellipsoids
that are spinning fast enough to serve as analogues to the Riemann ellipsoids that
lie along the LSA sequence in Figure 3.

As just summarized, however, groups that have modeled the nonlinear develop-
ment of the bar-mode instability in rapidly rotating, axisymmetric gas clouds have
discovered that, after shedding a bit of material in the equatorial plane, the sys-
tem usually settles down into a steady-state bar. Also, as Cazes & Tohline (2000)
have pointed out, this bar in many respects serves as a compressible analog of the
Riemann ellipsoids (CARE). With Lebovitz’s revised fission hypothesis in mind,
Cazes (1999; see also Tohline & Durisen 2001) slowly cooled one of these CAREs,
following its cooling evolution in a self-consistent fashion with a finite-difference
hydrodynamic code. Because the gas was being modeled as a polytrope, cooling
was accomplished by slowly decreasing the system’s polytropic constant,K, ac-
cording to the relationK = K0(1− t/τ cool) with τ cool = 4Ppattern, wherePpatternwas
the initial pattern rotation period of the bar. The configuration slowly contracted
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and began to spin somewhat faster, as expected, and it also became somewhat
more elongated. Roughly speaking, from a configuration like point 3 in Figure 3,
the system slowly evolved to the left along the LSA sequence. Then, afterK had
decreased to approximately half of its original value, the model began to oscillate
dynamically between a centrally condensed, bar-like state and a distinctly dumbbell
shape. In its dumbbell state the model presented a pair of clearly defined off-axis
density maxima and a velocity field that showed circulation about each density
maximum. Evidently the bar had reached a point in its evolution along the LSA
sequence where there were two equally plausible equilibrium configurations into
which it was permitted to settle. Cazes (1999) hypothesized that upon further cool-
ing the system was likely to evolve along a dumbbell-binary sequence analogous to
the one depicted by Eriguchi & Hachisu (1985) and through a common-envelope
binary state like the one discussed by Tohline et al. (1999).

Unfortunately, owing to computational constraints, Cazes was unable to follow
his cooling evolution further, and when cooling was stopped the model settled into
a centrally condensed, rather than a binary, configuration. Thus, it is debatable
whether Cazes’ model was actually progressing along a route to fission, but his
simulation provides tantalizing evidence that Lebovitz’s revised fission hypothesis
may be correct under certain circumstances.

Stability of Accretion Disks

After an equilibrium core forms at the center of a collapsing gas cloud, it will
continue to grow in mass through the direct accretion of infalling cloud material,
but the core will be able to directly accrete only the cloud material that has relatively
low specific angular momentum. Specifically, only material that arrives at the
surface of the core with an angular velocity.ωec

max, as given by Equation 24, will
be gravitationally bound to the core. For a core of radius Rec this means that only
material with a specific angular momentumj< j ec

max≈ R2
ecω

ec
max will fall directly

onto the core. The rest of the infalling material must form or become part of a
centrifugally supported disk that surrounds the core. For purposes of illustration
we have listed in Table 2 the value ofj ec

max that is associated with the equilibrium
core that will form during a spherically symmetric collapse at the points marked
B, C, and D along the evolutionary path shown in Figure 2. (In each case, Rec has
been estimated by treating the core as a sphere of mass Mequil and mean densityρ
as given in Table 2.)

In practice, unless the molecular gas cloud is initially very slowly rotating,
only a small fraction of the cloud’s gas will havej< j ec

max. Consider, for example,
the canonical uniform-density, spherical gas cloud that is initially rotating with an
angular velocityωi and, hence, initially has a ratio of rotational to gravitational po-
tential energyβ i= 1

2(ωi/ω
cl
max)

2. [Cameron (1978) and Cassen & Summers (1983)
examined models of this type in the context of the formation of the solar nebula.]
The specific angular momentum of the material in such a cloud increases as one
moves out from the center of the cloud. Specifically, in terms of the fractional mass
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m$ that is enclosed inside each cylindrical radius$ ,

j = 5

2

J

M
[1− (1−m$ )2/3] (32)

(Hachisu et al. 1987). By inverting Equation 32, we obtain the following expression
for the fraction of the cloud’s material that has a specific angular momentum
j ≤ j ec

max:

m$ = 1− [1− η(2βi )
−1/2]3/2 ≈ ηβ−1/2

i , (33)

whereη≡ ( j ec
max/ j cl

max) and j cl
max is the maximum specific angular momentum that

material can have in the initial, marginally Jeans-unstable gas cloud. Examining
the values ofj ec

max listed in Table 2 (and realizing that the value given for Case A
suppliesj cl

max= 3.6× 1021), we see thatη ranges between 4× 10−3 (Case B) and
1× 10−4 (Case D). Hence, unlessβ i is extremely small,m$ will be very small,
indicating that the majority of the cloud’s mass (1−m$ ) will be unable to fall
directly onto the central equilibrium core. One arrives at this conclusion even
if the uniformly rotating cloud is initially as centrally condensed as a singular
isothermal sphere (Cassen & Summers 1983, Terebey et al. 1984).

We must therefore ask, as Cameron (1978) and Cassen & Moosman (1981) did
in the context of the primitive solar nebula, whether the surrounding disk of gaseous
material will remain stable as an axisymmetric configuration when it accumulates
as much or even more mass than the central core. Cameron was interested in the
possibility that a giant gaseous proto-planet might form from a gravitational insta-
bility in such a disk. Here we are of course interested in whether an object (or more
than one object) with a mass comparable to the central core might form from such
a disk. With this in mind, we focus on recent studies that have examined whether
or not protostellar disks are susceptible to global, nonaxisymmetric instabilities
with relatively long wavelengths (low azimuthal mode numbersm) so that their
development incorporates a sizeable fraction of the gas that is in the disk.

As Shu et al. (1990) have summarized, there is a long history of research into
the stability of disks in the context of galaxies, evolved stars, and planetary rings.
Some of this work is relevant to discussions of the stability of protostellar accre-
tion disks [such as the classic works of Toomre (1964) and Goldreich & Tremaine
(1978)], but protostellar disks are sufficiently different from planetary rings and
galaxy disks that issues related to their stability have to be addressed separately
(Adams et al. 1989). Despite continuing improvements in computing resources,
it is still very difficult to model with adequate spatial and time resolution the full
three-dimensional evolution of protostellar disks. This is primarily because they
have a significant radial extent, so the dynamical timescale governing events near
the inner edge of the disk (near the surface of the protostar) can be many orders
of magnitude shorter than the relevant timescale at the outer edge of the disk. The
vertical thickness of the disk is also generally expected to be very small com-
pared with the radial extent of the disk, which puts extra demands on a model’s
spatial resolution. As a result, the models that have been developed have either
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(a) assumed that the disk is infinitesimally thin (has no vertical extent) and exam-
ined the evolution only of two-dimensional ($ , θ ) systems or (b) assumed that the
disk has some vertical thickness but does not have a large radial extent relative to its
inner edge, in which case the structure resembles a torus. The work of Papaloizou
& Lin (1989) and Adams et al. (1989) have led the way in the former category
of investigations; Papaloizou & Pringle (1984) and Goodman & Narayan (1988)
have led the way in the latter category.

Studies of infinitesimally thin, self-gravitating disks generally have shown that,
under a wide range of conditions the disk will become unstable toward the devel-
opment of long-wavelength, spiral shaped instabilities if the disk-to-central-object
mass ratio,Md/Mc, is sufficiently large (Papaloizou & Lin 1989; Shu et al. 1990;
Heemskerk et al. 1992; Noh et al. 1991, 1992; Laughlin & Korchagin 1996; Taga
& Iye 1998). Most significantly, Adams et al. (1989) discovered that anm= 1
“eccentric mode” instability arises in disks withMd/Mc& 1 even in situations in
which an evaluation of the Toomre (1964)Q parameter indicates that the growth
of many other modes is suppressed. It appears as though any of the spiral modes
whose relative stability is governed by the importance of self-gravity in the disk
will be effective at redistributing angular momentum within the disk and, thereby,
can drive accretion of disk material onto the central protostar (e.g., Laughlin &
Różyczka 1996). However, the “eccentric mode” appears to be special in the sense
that, through its development, a “clump” of material preferentially accumulates
on one side of the disk, suggesting that a separate protostellar core may be able
to form from material in the disk and remain in orbit about the original, central
object. This is dynamically allowed because, as explained by Adams et al. (1989),
as them= 1 distortion grows in the disk, the central protostar wanders away from
the center of mass of the system along a spiral trajectory that keeps it and the
clump of material in the disk on opposite sides of the system’s center of mass.
With finite-difference hydrodynamical techniques, it has been difficult to follow
this proposed disk fragmentation event to completion. As Laughlin & R´ożyczka
(1996) explained following one of their simulations, before the clump became fully
developed, “the central star had spiraled out and crashed into the inner disk edge,
effectively terminating the computation due to numerical difficulties.” Smoothed-
particle hydrodynamic simulations have been more successful at illustrating how
this full fragmentation event may occur (Adams & Benz 1992, Bonnell 1994).

It is significant that all of the research on infinitesimally thin disks conducted
after the insightful work of Adams et al. (1989) has confirmed that protostellar
disks are susceptible to anm= 1 instability if Md/Mc& 1; and almost all agree that
this is the first unstable mode that is likely to spontaneously develop as the mass
ratioMd/Mc grows through the accretion of infalling cloud material (see Laughlin
& Różyczka 1996 for a counter-example). At present, however, there is little
agreement regarding the precise physical mechanism responsible for exciting this
mode—indeed, five explanations have been proposed (Shu et al. 1990, Heemskerk
et al. 1992, Noh et al. 1992, Laughlin & Korchagin 1996, Taga & Iye 1998).
As a result, there is little agreement regarding the precise mass ratio at which
the mode first becomes unstable, although it seems in most cases to be within a
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factor of a few of the value 3/4π ≈ 0.24 suggested by the derivation of Shu et al.
(1990).

Self-gravitating, geometrically thick disks (tori) that orbit a central point mass
also appear to be unstable toward the development of long-wavelength, nonaxi-
symmetric modes. As Goodman & Narayan (1988) first outlined, two different
types of modes appear to be excitable in addition to the “sonic” mode identified
by Papaloizou & Pringle (1984) in massless accretion tori. Analogs of all three
modes appear as well in “annuli,” that is, in differentially rotating systems that
have limited radial extent but extend vertically to infinity (see Goodman & Narayan
1988, Christodoulou & Narayan 1992, Christodoulou 1993). Nonlinear dynamical
simulations have demonstrated that radially slender tori and annuli readily distort
into mclumps, wherem is the mode number of the fastest growing, unstable mode
(Hawley 1990, Tohline & Hachisu 1990, Christodoulou 1993, Woodward et al.
1994). For a given disk-to-central-object mass ratioMd/Mc the relevant mode
number decreases as the radial extent (thickness) of the torus increases; for a given
radial extent the mode number decreases as the mass ratio decreases.

In the simulation that seems most relevant to our discussion of binary star for-
mation, Woodward et al. (1994) evolved to nonlinear amplitude a toroidal system
with Md/Mc= 1 that was unstable only toward the development of anm= 1 spiral
disturbance. As it grew, the distortion produced a single, high-density clump that
was orbiting “about the center of mass of the system along with (but roughly oppo-
sitely positioned from) the central object,” in accordance with the behavior of the
“eccentric instability” that was first discussed by Adams et al. (1989) in the context
of infinitesimally thin disks. Also, as predicted, the central object moved along a
spiral trajectory, progressively farther from the center of the system. Unfortunately
[and reminiscent of the account given by Laughlin & R´ożyczka (1996)], “before
the high-density blob in the disk. . . developed to the point where it clearly could be
identified as a compact entity distinct from the rest of the disk material, the central
object. . . impacted the inner edge of the disk.” The simulation was terminated, so
it never became clear whether a binary protostellar system would be the outcome.

Andalib et al. (1997) have attempted to summarize and provide a unified dis-
cussion of these results. Generally speaking, the picture that emerges from these
studies of geometrically thick disks is consistent with the one that has arisen from
the studies of infinitesimally thin disks: As protostellar disks grow in mass and
radius by accreting infalling cloud material, they are likely to become unstable
toward the development of long-wavelength, nonaxisymmetric structure, with the
so-called “eccentric mode” generally being dominant. It is therefore conceivable
that some protostellar disks will break up into one or more pieces containing a
sizeable fraction of the disk’s entire mass.

SUMMARY AND CONCLUSIONS

The theory of star formation would be tremendously simplified if we could
point to one physical mechanism that is primarily responsible for the transforma-
tion of single clumps of gas into binary systems. Boss (1988) has argued rather
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persuasively that prompt fragmentation is the preferred mechanism and, given
only meager evidence to the contrary, others have been inclined to agree (Clarke
& Pringle 1993, Bodenheimer et al. 1993, Bonnell 2001). From an extensive review
of the literature, I must conclude that, to date, none of the ideas that has been put
forth to explain the origin of binary star systems is completely satisfactory. At the
same time, I would argue that several of the ideas appear to be quite promising, but
a significant amount of additional effort must be devoted toward the development
of each of these ideas before any of them will become fully convincing. Before
outlining the areas that require more work, let us summarize the various points on
which there seems to be broad agreement.

Issues on Which There is Broad Agreement

1. Capture holds little promise as a binary formation process. It seems clear
from observations that young stars generally have paired themselves up into
bound systems before they have reached stage IV in the evolutionary scenario
presented by Shu et al. (1987), that is, well before they have reached the main
sequence. This provides very little time for the capture process to operate
because it is inherently inefficient.

2. Clouds do not fragment during a phase of free-fall collapse. This runs con-
trary to earliest expectations, but it seems to be borne out repeatedly by
modern numerical simulations of cloud collapse that have included realistic
effects of gas pressure and rotation. Instead, clouds tend to collapse to a rota-
tionally flattened, quasi-equilibrium configuration before any fragmentation
occurs, if at all.

3. Prompt fragmentation generally works immediately following a phase of
free-fall collapse if a significant fraction of the cloud’s mass falls into a
rotationally flattened configuration approximately in unison, especially if
this configuration forms while the cloud is still in the isothermal phase of its
contraction (that is, while it maintains a mean density.10−13g cm−3). Clouds
are therefore susceptible to prompt fragmentation if they begin to collapse
from a configuration that is relatively uniform in density and contains more
than a few Jeans masses of material (i.e.,αi is well below 1/2).

4. Prompt fragmentation usually does not work if a cloud collapses in a nonho-
mologous fashion. Instead, a central core of relatively small mass forms first,
followed by an extended phase of accretion. This core will necessarily be-
come rapidly rotating as it accretes infalling material from the surrounding,
free-falling cloud.

5. Rapidly rotating, axisymmetric cloud cores do not break up when they en-
counter the dynamical bar-mode instability, like the one that spontaneously
arises at the bifurcation point labeledO2 in Figure 3 (β & 0.27). Instead, grav-
itational torques are effective at redistributing angular momentum within the
core, a bit of high specific angular momentum material gets shed in the
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equatorial plane, and the core settles down into a new, dynamically stable—
although still rapidly rotating—configuration.

6. The core generally settles into a spinning ellipsoidal or bar-like structure
after it encounters the dynamical bar-mode instability. By many accounts, the
configuration appears to be a compressible analog of the Riemann ellipsoids
that lie, for example, along the model sequence labeled LSA in Figure 3.

7. A substantial disk will almost certainly form around the central core through
the additional infall of high specific angular momentum cloud material, and
it will likely grow to a mass that is comparable to or larger than the mass of
the core.

8. Protostellar disks become dynamically and globally unstable toward the
development of long-wavelength, nonaxisymmetric structure when the mass
contained in the disk becomes comparable to or greater than the mass of the
core that it surrounds.

Out of this list, items 3, 6, and 8 provide the most promising leads in connection
with our search to find the process or processes by which binary stars form. Further
study is required, however, before we will be able to specify with confidence the
degree to which any or all three of them is, in practice, relevant.

Issues that Require Further Investigation

By all accounts, prompt fragmentation along the lines described in item 3, above,
is a strong candidate for explaining how binaries form. Numerous simulations by
many groups have demonstrated that, under the conditions described, a collapsed
cloud configuration will undergo rapid, nonaxisymmetric deformation. I remain
concerned about several aspects of this proposed process, however; some of these
concerns are alluded to in “Does Prompt Fragmentation Occur?” and “Are Bina-
ries the Result?”. First, to be effective, the process requires that at the onset of
collapse the cloud must contain more than a few Jeans masses of material. How is
nature able to construct such an artificially unstable initial configuration? Second,
the outcome of the fragmentation process seems to be relatively sensitive to initial
conditions. While it is true that many published simulations show the development
of two fragments (or at least a strongm= 2 azimuthal mode deformation), it is
usually also true that some type of two-fold deformation was imposed as a form of
perturbation in the initial, unstable cloud. Why should nature preferentially intro-
duce two-fold deformations into significantly Jeans-unstable initial states? Third,
few simulations have been able to follow an individual cloud’s evolution very far
beyond the initial instant of fragmentation to determine whether a binary protostel-
lar state is actually the outcome. Usually simulations are terminated before even
one full orbit (and one rotation period of the initial cloud) has been completed.
Fourth, collapsed cloud configurations are much less susceptible to prompt frag-
mentation after the gas has entered a phase of its evolution in which it heats up
upon further compression, that is, at densities ¯ρ >10−13 g cm−3 (see Figure 2).
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Hence, it is difficult to understand how prompt fragmentation can explain the
formation of binary systems with periods shorter than about 1000 years (see the
top-most horizontal axis of Figure 2).

The model developed recently by Shu et al. (2000) and Galli et al. (2001) may
very well provide an answer to the first two of these concerns. It relies on the
introduction of magnetic fields to support the initial cloud state and ambipolar
diffusion to slowly decouple the cloud from the field so that the cloud is brought
gradually to the “brink of instability.” While studying the properties of rotating
gas clouds that are supported against collapse by a magnetic field, this group has
found that multiple-lobed (m= 2, 3, 4,. . .) configurations naturally bifurcate from
an underlying axisymmetric sequence. Thus, it is reasonable to expect rotating
clouds to already exhibit appreciable nonaxisymmetric distortions before the field
decouples from the gas. Furthermore, if the field rather quickly decouples from
the gas, the cloud will begin its free-fall collapse from a configuration that has a
relatively smallαi. Shadmehri & Ghanbari (2001) and Nakamura & Li (2001) have
presented related investigations of the structure and evolution of nonaxisymmetric
distortions in magnetically supported clouds.

In connection with the third concern that has been raised in the context of mod-
els of prompt fragmentation, it is clear why most numerical simulations have been
terminated prematurely. Integration time steps are forced to be very small because
they are linked to the free-fall (and sound-crossing) timescale associated with the
densest region of a fragment, whereas the relevant orbital period is tied to the mean
density of the configuration and, particularly when dealing with isothermal flows,
these two timescales can become separated by many orders of magnitude. This
unfortunate situation will be overcome only when we develop numerical tools that
permit us to model hydrodynamical flows in three dimensions for times that are very
long compared with the Courant-Freidrichs-Lewey constraint (“Prompt Fragmen-
tation”). Until we overcome this practical limitation of our modeling techniques,
we will be unable to determine (a) whether prompt fragmentation preferentially
forms binary sytems, (b) whether any initial fragments survive subsequent phases
of accretion or merge back together, (c) what the final mass ratio of the binary
system will be, and (d) whether the circum-stellar and/or circum-binary disks that
form from the infalling gas indeed become massive relative to the mass of the
newly formed binary cores. By building certain simplifying assumptions into their
smoothed-particle hydrodynamic scheme, Bate et al. (1996) and Bate & Bonnell
(1997) have begun to address this challenging but important numerical techniques
problem.

In connection with item 6, above, it appears as though the results of our modeling
to date are consistent with the revised fission hypothesis put forward by Lebovitz
(1974, 1984) (see “Lebovitz’s Revised Version of the Fission Theory,” above).
That is, rapidly rotating axisymmetric configurations that become susceptible to
the dynamical bar-mode instability evolve to a configuration that, for all practi-
cal purposes, resembles a Riemann ellipsoid. In order to complete the test of this
revised fission hypothesis, a method will have to be found to slowly evolve such
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configurations along a sequence of more and more distorted ellipsoids (like the
LSA sequence illustrated in Figure 3) to see whether the sequence eventually bi-
furcates to a dumbbell-binary sequence and whether slow evolution along this new
sequence indeed leads to fission. As described in “Slow Contraction of a Rapidly
Rotating Ellipsoid,” above, Cazes (1999) made an early attempt to model such an
evolution, but his work needs to be extended; his results need to be confirmed by
other research groups, and similar evolutions starting from different initial ellip-
soidal states need to be investigated. The challenge will be to develop a technique
by which a variety of rapidly rotating, ellipsoidal configurations can readily be
constructed out of differentially rotating, compressible fluids. Numerical models
of fully three-dimensional structures can be constructed one at a time by following
through to completion the dynamical bar-mode instability, but this is an extremely
inefficient way to proceed. More efficient methods recently have been devised to
construct two-dimensional analogs of these rapidly rotating ellipsoidal configura-
tions under certain restrictions (Syer & Tremaine 1996, Andalib 1998). Extending
such techniques to three-dimensional systems would be extremely desirable.

Finally, we address the shortcomings associated with item 8, above. With few
exceptions, simulations that have attempted to follow the nonlinear development of
nonaxisymmetric instabilities in massive protostellar disks have run into difficulties
following the evolutions to completion. This has especially been true in the case of
them= 1 “eccentric instability,” which appears to be most promising in the context
of the problem of binary star formation (see “Stability of Accretion Disks,” above
for details). Again, dynamical range appears to be the problem. For simplicity, the
protostellar core that is initially positioned at the center of the disk usually has been
treated as a point mass. When the core migrates away from the center of mass of
the system and impacts the disk, the simulation grinds to a halt as it tries to follow
flow of the disk material into the point-mass singularity. A method needs to be
devised to overcome this problem so we can determine with confidence what the
outcome of this instability is; in particular, whether the disk material clumps up
into a binary companion to the core. In this context, Pickett et al. (1998, 2000) have
been studying the stability of systems in which the central protostar is fully resolved
along with the disk. Their models have included disks with relatively modest radial
extent (and therefore a relatively modest range of dynamical timescales), so they
have only been able to test the viability of the eccentric mode instability in a limited
way.

When examining gravitational instabilities in a protostellar disk, we must also
keep in mind that viscous processes—or indeed the gravitational instability itself—
acting within the disk may prevent it from ever holding a significant amount of
material. Viscosity (or gravitational torques) can facilitate the radial redistribution
of angular momentum within the disk and thereby allow material to move radially
inward and fall onto the central protostar. If the rate of accretion of material
through the disk onto the central core ever exceeds the rate of accretion of material
from the surrounding gas cloud onto the disk, then the disk will decrease in mass,
significantly reducing the likelihood that a binary star will form through the process

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 2

00
2.

40
:3

49
-3

85
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

A
PE

S 
on

 0
4/

25
/0

6.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



25 Jul 2002 19:35 AR AR166-AA40-10.tex AR166-AA40-10.SGM LaTeX2e(2002/01/18)P1: GJC

382 TOHLINE

of disk fragmentation. Our understanding of the processes that lead to the formation
of binary stars is therefore tightly coupled to our understanding of viscous transport
processes in protostellar disks.

In conclusion, we reflect back on Mathieu’s (1994) statement—supported
through observations and not through theoretical models—that binary formation is
the primary branch of the star formation process. Obviously nature knows how to
form binary star systems. Hopefully, in the coming decade, our numerical models
will find one or more fully convincing ways to do so as well.

The Annual Review of Astronomy and Astrophysicsis online at
http://astro.annualreviews.org
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