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Abstract. In this paper, we describe a very simple method to calculsepbsitions of the planets in the
sky. The technique used enables us to calculate planetaitygms to an accuracy df° for +50 years from

the starting epoch. Moreover, this involves very simplegitions and can be done using a calculator. All
we need are the initial specifications of planetary orbitssfame standard epoch and the time periods of their

revolutions.

1. INTRODUCTION

The night-sky fascinates people. To be able to locate a plartbe night sky is something that
thrills people. Since the planets move with respect to tledpaund stars and continuously change
their positions in the sky, locating them in the sky couldegupbe a non-trivial task. It is a general
notion that calculating the planetary positions is a vedjdas task, involving a lot of complicated
mathematical equations and computer work. However, to ketallocate planets in the sky one
does not really need very accurate positions. After all,|&eplaws, which describe planetary orbits
reasonably well, are mathematically simple. Hence, onédagse Kepler’s law to predict planetary
positions in which mutual influence of planets is not consde Thereby an accuracy ef 1° in
planetary positions would be achieved.

In this project, we employ a very simple method to calculat positions of the planets. The
technique we use enables us to calculate planetary pasititoan accuracy of° for £50 years
from the starting epoch. Moreover, this involves very sinpalculations and can be done using
a calculator. All we need are the initial specifications afrtary orbits for some standard epoch
and their time periods of revolution. Although accuratenglary positions could be obtained easily
from the internet, yet it is very instructive and much mortséging to be able to calculate these
ourselves, starting from basic principles and using a srppbcedure.

Ouir first step would be to calculate the positions of all trepts (including Earth) in their orbits
around the Sun. We initially consider the planets to revalk@und the Sun in uniform circular


http://arxiv.org/abs/0910.2778v1

Tanmay Singal and Ashok k. Singal

motions. Knowing their original positions for the startiegoch, we calculate their approximate
positions for the intended epoch. As a consequence of thggapnation there will be an error
since the actual orbits are elliptical. To get more accupatgtions, we require some corrections,
which are derived in Appendix A. These corrections accoanttfe elliptical motion.

Knowing the positions of the planets around the Sun, we camtise simple co-ordinate geometry
to transform their position with respect to an observer orlfE&@ur task becomes simple since the
orbits of all planets more or less lie in the same plane, Yie.dcliptic plane.

In this project, we calculate the motion of naked-eye plaoety, although the procedure can be
applied equally well for the remaining planets also.

2. CELESTIAL CO-ORDINATES

All celestial bodies in the sky, including stars, planetsn SVioon and other objects, appear to lie on
the surface of a giant sphere called the Celestial Spheretdbarth’s eastward rotation around its
axis, the celestial sphere appears to rotate westward @iearth in 24 hours. Infinitely extending
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Figure 1. Celestial sphere showing the ecliptic co-ordinate systm [
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the plane of Earth’s equator into space it appears to irtetke celestial sphere to form a circle,
which is called the Celestial Equator.

As Earth moves around the Sun - as seen from the Earth - Suges#s position with respect
to the background stars. The path that Sun takes on theiatlgshere is called the “Ecliptic”.
The familiar Zodiac constellations are just divisions d&f #tliptic into twelve parts. Since all other
planets revolve around Sun in nearly the same plane, theyaplsear to move on the ecliptic.

The celestial equator is inclined to the ecliptic28/5°. The points of intersections of these two
circles on the celestial sphere are called the “Vernal Emdiand the “Autumnal Equinox”. The
Vernal Equinox, also known as the Spring Equinox, is the pamthe celestial sphere that the Sun
passes through around 21st of March every year.

In astronomy, an epoch is a moment in time for which celestiabrdinates or orbital elements
are specified, while a celestial co-ordinate system is ardotate system for mapping positions in
the sky. There are different celestial co-ordinate systeatch using a co-ordinate grid projected on
the celestial sphere. The co-ordinate systems differ anthéir choice of the fundamental plane,
which divides the sky into two equal hemispheres along at@ieae . Each co-ordinate system is
named for its choice of fundamental plane.

The ecliptic co-ordinate system is a celestial co-ordisgstem that uses the ecliptic for its funda-
mental plane. The longitudinal angle is called the eclifutigitude or celestial longitude (denoted
), measured eastwards fravh to 360° from the vernal equinox. The latitudinal angle is called
the ecliptic latitude or celestial latitude (denot8}] measured positive towards the north. This
coordinate system is particularly useful for charting ssigstem objects.

The Earth’s axis of rotation precesses around the ecligticwith a time period of about 25800
years. Due to this, the equinoxes shift westwards on thetecliDue to the westward shift of the
Vernal Equinox, which is the origin of the ecliptic co-ordie system, the ecliptic longitude of the
celestial bodies increases by an amaifit/258 ~ 1.4° per century.

Most planets, dwarf planets, and many small solar systerebdtve orbits with small inclina-
tions to the ecliptic plane, and therefore their ecliptittlae 5 is always small. Due of the planets’
small deviation from the plane of the ecliptic, the ecliptimgitude may alone suffice to locate
planets in the sky.

3. CALCULATING PLANETARY POSITIONS
3.1 HELIOCENTRIC CIRCULAR ORBIT

Here, we consider the planets to move around Sun in circubdtsovith a uniform angular speed.
The initial values of mean longitudeg,] of the planets given in Table 1 are for 1st of January,
2000 A.D., 00:00 UT (adapted from [1]). In Table 1, we havendisted the period]" (days), of
revolution of the planets [2]. Then, the mean angular speejve by,w, = 360/T (°/day). We
denote the Mean Longitude of the planets in the imaginaoutar orbit for subsequent dates)as
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Table 1. Mean longitude\o on 01/01/2007, 00:00 UT from the initial valug

Planet i (°) T (days) wo (°/day) o (°) e (°) Error (°)
Mercury 250.2 87.969 4.09235 274.3 268.7 +5.6
Venus 181.2 224.701 1.60213 317.8 317.8 0.0
Earth 100.0 365.256 0.98561 100.2 100.2 0.0
Mars 355.2 686.980 0.52403 255.1 244.5 +10.6
Jupiter 34.3 4332.59 0.08309 246.8 242.6 +4.2
Saturn 50.1 10759.2 0.03346 135.7 140.2 -4.5

We now demonstrate how to calculatgfor Mars on 1st January 2007.

A; of Mars on 01.01.2000 at 00:00 UT = 355.2

No. of days b/w 01.01.2000 and 01.01.2007 = 2557 days.

Mean angle traversed duration this peried.52403 x 2557 = 1339.9°.
S0,)\g 0n 01.01.07 at 00:00 UE 355.2 + 1339.9 = 255.1°.1

In the same way, mean longitudes of all planets have beenlatdd in Table 1 for the same
epoch. For a comparison, we have listed the actual longitalles §.) from Indian Ephemeris [4]
for that epoch. Here, we see, from the error in column 7, thatlas to correct for the elliptical
shape of the orbit, at least for some of the planets.

3.2 HELIOCENTRIC ELLIPTICAL ORBIT

Before we make corrections for the elliptical shape of th@teve need to know the orientation of the
ellipse within the ecliptic and that can be defined by the ituae of the perihelior. Longitudinal
distance of the planet from the perihelion along the etigdtorbit is known as its Anomaly (denoted
by #), while angular distance of mean position of planet withpees to the perihelion is called
the Mean Anomaly (denoted ). As has been discussed in Appendix A, there is a one—to—one
correspondence betweérandd,.

The correctiomd to be added td, (Equation 4) is,

5
Af = 2esinfy + ZeQSin%O

wheree is the eccentricity of the ellipse.

We have taken out the integer number of complete orbits.
2perihelion is the point on the elliptical orbit closest te Bun, while aphelion is the point farthest from Sun.
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Table 2. Corrected longitude. on 01/01/2007, 00:00 UT

Planet o (°) Ap (0) 6o (°) e A6 (°) 0 (°) A(°) e (°) Error (°)

Mercury 274.3 77.5 196.8 0.2056 -5.1 191.7  269.3 268.7 0.6
Venus 317.8 131.6 186.2 0.0068 -0.1 186.1  317.8 317.8 0.0
Earth 100.2 102.9 357.3 0.0167 -0.1 357.2 100.2 100.2 0.0
Mars 255.1 336.1 279.0 0.0934 -10.7 268.3 2445 2445 0.0
Jupiter 246.8 14.3 232.4 0.0485 -4.2 2282 2426 242.6 0.0
Saturn 135.7 93.1 42.6 0.0555 4.5 47.1 140.3 140.2 0.1

Let's consider Mercury'’s position on 01/01/07 at 00:00 UT.

Mean longitudejq = 274.3

Perihelion Longitude), = 77.5°

Mean anomalyfy = Ao — A, = 196.8°

1st order correctior@e sinfy = 2 x 0.2056 x sin(196.8°) = —0.11885 rad= —6.8°
2nd order correction}e? sin 26y = 1.25 x (0.2056)% x sin(33.6°) = 0.02924 rad= 1.7°
A6 = (1st order correction) + (2nd order correctien)-6.8 + 1.7 = —5.1°

Anomaly,f = 6y + Af = 196.8 — 5.1 = 191.7°

Precession of vernal equinox in 7 ys7 x 360,/25800 = 0.1°.

A = Ao + A6 + precession of vernal equinex274.3 — 5.1 + 0.10 = 269.3°.

We can obtain corrections for the elliptical orbits of thenegning planets in the same way. In
Table 2, We have listed values of the longitude of periheligy) and eccentricityd) for all planets,
taken from [1]. Also tabulated are the calculated anom@)iyatid longitude X). From Table 2, we
see that the errors now are indeed smaller tifan 1

3.3 GEOCENTRIC PERSPECTIVE

Until now, we have calculated the longitudesf the planets on the celestial sphere centered on the
Sun. We can also calculate radiof their orbits around the sun, giving their positions ingrdbrm
(r, \). To get the positions of planets on the celestial spherteoceth on the Earth, we convert the
polar co-ordinates into rectangular form and after shiftime origin from Sun to Earth, we change
them back into polar form.

For converting into a rectangular form, we have to decidetpe direction of the X and Y axes.
We assume X to be in the positive direction along the lineijmjrthe Sun to the Vernal Equinox,

and Y to be perpendicular to X in the ecliptic plane in such & et the longitude is a positive
angle.
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3.4 AN EXAMPLE

As an example, this procedure is demonstrated for Mercpigsition on 01/01/07 at 00:00 UT.

1 HELIOCENTRIC CO-ORDINATES

Distancey, of Mercury from Sun can be obtained from anontalys,

a(l —e?)

= = 0.464A.U.,
1+ ecost

where a = 0.387A.U. is the length of semi—-major axis of its elliptical orbit. Thheliocentric
polar co-ordinates of Mercury are (0.464 A.U., 269.3Then we can get heliocentric rectangular
co-ordinates of Mercury as,

X, = rcos(A\) = —0.006 A.U.
Y, = rsin(\) = —0.464 A.U.

Similarly we get heliocentric rectangular co-ordinate&afth as,

Xy = —0.174 A.U.
Yy = 0.968 A.U.

2 GEOCENTRIC CO-ORDINATES
Geocentric rectangular co-ordinates of Mercury then are

X, = Xp, — Xo = 0.168 A.U.
Y, =Y, - Y, =-1432AU.

Converting these into polar form, we get the geocentriadist and longitude as,

rg =+/(X2+Y2) =1442AU.
Ag = tan~1(Yy/Xy) = 276.7°.

We give the calculated geocentric longitudes, on 01.01t000a0 UT, of various planets in
Table 3. Comparing with the geocentric longitudes from epérés )\ ., it can be seen that the
errors are much less thds. In the Earth/Sun row in Table 3,, A\, and 4. are the geocentric
values for the Sun’s position. The position of Sun on thestelesphere, as seen from Earth, isin a
direction exactly opposite to that of Earth as seen from tiie Sherefore the geocentric longitude
of Sun is the heliocentric longitude of Earth plus 180
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Table 3. Geocentric longitude\, on 01/01/2007, 00:00 UT

Planet a (A.U.) e r (A.U.) A(°) rg (AU)  Ag(°)  Age (°)  Error ()

Mercury 0.387 0.2056 0.464 269.3 1.44 276.7 276.5 0.2
Venus 0.723 0.0068 0.728 317.8 1.62 296.1 296.1 0.0
Earth/Sun 1.00 0.0167 0.983 100.2 0.983 280.2 280.2 0.0
Mars 1.52 0.0934 151 244.5 2.38 258.4 258.4 0.0
Jupiter 5.20 0.0485 5.36 242.6 6.17 248.2 248.2 0.0
Saturn 9.55 0.0555 9.17 140.3 8.45 144.6 144.5 0.1

We have ignored any perturbations on the motion of a planettduhe effect of other planets
which may distort its elliptical path. We are able to get thewmacy of< 1° for long periods 450
years) because most of the terms ignored in the heliocdatrgitude calculations are periodic in
nature and do not grow indefinitely with time (see e.g., [3he other parameters characterizing
the elliptical orbit, like the longitude of the periheliosemi—major axis and eccentricity etc. change
so slowly with time that for the accuracy we are interestedtiase can be considered constant for
+50 years.

4. LOCATING PLANETSIN THE SKY

Now that we have calculated the geocentric longitudes optheets, we are in a position to locate
them in the sky. Any one familiar with the Zodiac constetias could locate a planet from its
position in the constellation in which it lies. The ecliptecdivided into 12 Zodiac signs — Aries,
Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagitts, Capricorn, Aquarius, Pisces. The
Vernal equinox, at zero ecliptic longitude, is the starthu first Zodiac sign and is also known
as the First Point of Aries. But there is a caveat attachecca&se of the precession the vernal
equinox has shifted westward by almost the full width of asteltation in the last- 2000 years
since when the Zodiac signs and constellation were perhapsdentified. As a consequence, the
First Point of Aries now lies in the constellation Pisces.r Egample, on 01/01/2007, geocentric
longitude276.7° of Mercury implies it is in the 10th Zodiac sign Capricorn,tactually lies in
the Sagittarius constellation, taking into account thét 4l one constellation due to precession.
There are further complications. The twelve constellatiare not all of equal length of arc along
the ecliptic longitude. Moreover there is another conatigh, viz. Ophiuchus, through which the
ecliptic passes. However these complications are somesghaside by the fact that there are only
about half a dozen stars in the Zodiac with an apparentdnie comparable to the naked—eye
planets, therefore with some familiarity of the night-skpe could locate the planets easily from
their geocentric longitude values. It further helps to rerher that unlike stars, the planets, because
of their large angular sizes, do not twinkle.

For a more precise location of a planet we can calculateldsive angular distance from the Sun
along the ecliptic.
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Table 4. Elongations of the planets on 01/01/2007

Planet Ae(®) ¥(°) Rise Time P(°) Setting Time
at 05:30 IST Before Sunrise at17:30 IST After Sunset
Sun 280.2 - - -
Mercury 276.7 -3.5 oh14™ -3.2
Venus 296.1 15.9 - 16.0 1ho4™
Mars 258.4 -21.8 1ho7™ -21.9
Jupiter 248.2 -32.0 2hog™ -32.4
Saturn 144.6 -135.6 ghpo™ -136.2

The difference between the geocentric positions of a planétSun (Table 4) is called the elon-
gation () of the planet and it tells us about planet’s position in tkye with respect to that of the
Sun. The longitude increases eastwards, therefore, ibtigitude of the planet is greater than that
of the Sun, then the planet lies to the east of the Sun. Thahsn@athe morning the Sun will rise
before the planet but in the evening the planet will be sgtifier the Sun. So the planet will be
visible in the evening sky in the west. On the other hand,efdkeocentric longitude of the planet
is smaller than that of the Sun, it will rise before the Sun ailtibe visible in the morning in the

eastern sky.
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Figure 2. A schematic representation of the elongations of planetheatimes of
sunrise and sunset on 1st January, 2007
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In Table 4, positions of planets with respect to Sun on 0D.Dare given for 00:00 UT, which
corresponds to 05:30 IST (Indian Standard Time). For exanipke geocentric longitude of Mars
with respect to Sun i258.4 — 280.2 = —21.8°. Thus Mars has a western elongation22° on
01.01.07,05:30 IST.

As Earth completes a rotation in 24 hours, the westward matfahe sky is at a raté5°/ hour.
This rate is strictly true for the celestial equator, but we ase this as an approximate rotation rate
even for the ecliptic, which is inclined at23.5° to the equator. Therefore Mars will rig2 /15 ~
about one and half hour before the Sun.

We have also tabulated elongations of the planets for the skate but at 17:30 IST. Note that this
corresponds to 12:00 UT and there is a change in the elomgatioes during this half a day due
to shifts in the geocentric longitudes of the planets andsthre Venus with an eastern elongation
~ 16° on that evening, will be setting a little more than an houeratte sunset. This way, one can
easily locate the planets in the sky from their elongations.

Figure 2 is a schematic representation of the relative ipositof the planets and the sun in the
morning and evening of 1st January, 2007.

5. CONCLUSIONS

It is a general notion that calculation of position of planiet the night sky is a difficult job, which
can be accomplished only by complex scientific computafiasig fast computers. The motive
of this project has been to bring out the fact that such coxgtel accurate computations are not
always really necessary. One can calculate the positiolaoggs using the method derived here and
get the thrill of finding the planet at the predicted positiothe night sky.

We have been able to obtain the position of planets withincanracy of1°, using a calculator.
This method can be used to reckon planetary positions tihfoyears of the starting epoch.

ACKNOWLEDGEMENTS

TS expresses his gratitude to the Astronomy and Astropsyaiidsion, and in particular Dr. Hari
Om Vats, of the Physical Research laboratory Ahmedabadenkerk on this project was done.

APPENDIX A: CORRECTION FOR THE ORBITAL ELLIPTICITY

We compute the correction for motion of a planet in an actlligtieal orbit from that in an imagi-
nary circular orbit. Period of revolution in circular orlttaken to be exactly the same as that in the
elliptical orbit. The origin of the mean longitude in ciranlorbit is chosen such that coincides
with the longitude\ of the planet when it is at the perihelion in its ellipticabdr For mathematical
convenience, we take = 0 at that instant. Then((0) = A(0). Let A, be the longitude of the
perihelion of the planet’s elliptical orbit. We subtraceth, from )\o and\ to obtain what is called
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1. The Initial Line (Joining the Sun to the Yernal Equinox)
2. The Elliptical Orbit
3. The Imaginary Circular Orhit
4. The Sun
5. Longitude of Perihelion of Elliptical Orhit
6. Mean Anomaly
7. Angle between Anomaly and Mean Anomaly
8. Planet on Elliptical Orbit
9. Planet on Circular Orbit
10. Direction Vector from Sun to Perihelion

Figure 3. A schematic diagram of the planet in circular and ellipticaition

the “mean anomaly” and “anomaly” respectively (denotecehey 6, and 8, respectively) of the
planet. Then

Mean Anomalyfy = Ao - Ap,

Anomaly,f = X - A,,.

Thendy(0) = 6(0)

In circular motion, the angular speed of the planet is caristdowever, in the elliptical motion,
the angular speed of the planet is not constant.

Let a timet has passed after= 0. Then, the change ify of the planet isvgt whereas the change
in @ of the planet won't be the same because of the variation iratigrilar speed along elliptical
trajectory.

Let AO(t) = 0(t) - 6p(¢).

We know that)y(¢) andé(¢) are periodic by the same time interval, asT is the time period of
revolution in both the cases (elliptical and circular mojioHence, all value o, (t) andf(¢) repeat
after a time period of T. Hencé,(¢) andf(¢) have a one—to—one relation. Hengs) also repeats
after timeT'. The uniform circular motion thus is a useful approximati@tause the errakd is
periodic with time and does not keep accumulating with timgrow to very large values.

To find the correction, first consider an elliptical orbit opknet around the Sun as shown in
Figure 3. We use the equation of the ellipse in polar co-atdis ¢, §) whered is the anomaly. The
equation of the ellipse then is,

10
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l a(l —e?)
T = =
14+ecosf 1+ ecosh

1)

wherel = a(1 — ¢?) is the semi-latus rectum withas the semi—major axis ardhe eccentricity
of the ellipse. The semi—minor axis of the ellipsé is a\ﬂl —e?).

Now, total area of the ellips@& = wab is swept inT’, the time period of revolution. From Kepler’s
second law we know that the rate of area swept out by the posigctor of planet (with respect to
Sun) is a constant. Therefore the rate of area swept is,

dA r2d8  mwab

dt 2dt T
Substituting from Equation (1), we get

2 (1-¢€?)3 df

T  (1+ecosh)? dt

We notice thaRx /T is nothing but the mean angular spegd Therefore

B t B t (1 _62)%

We want to get the equation in the forth,= 6, + A#f, so that by adding the longitude of the
perihelion on both sides of the equation, we could get thetical between the correct longitude
and the mean longitudg,.

A direct integration of Equation (2) may be very complicatBdt we can expand the integrand as
a series and integrate only a few first most significant terisinomial series expansion is possible
because the eccentricity of an ellipses. 1. Also, during the expansion we drop terms of order
or higher.

t
3
Bo(t) :/ (1- 562 +--9(1 - 2ecos9—|—3ezc0329...)d9
0
After integration we get,

3
0p=0—2esinf + 16251n29+---
which can be written as
AG:@—GO:2esin9—geQSin29+~-~ 3)

However we want the r.h.s. of Equation (3) to be expressedrimg off,. For that we can
substituted = 0y + A6 on the r.h.s. to get,

A = 2esin(fy + Af) — % e?sin[2(0p + A)] + - - -

11
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Expanding in powers of\@ and neglecting terms of ordef A§)?2, 2 Af and higher we get,

A (1 —2ecosby) = (2esinby — %62 sin 26),
or

Al = (2esinby — g e?sin 20p) (1 — 2ecosfy) .
Again Expanding in powers efand ignoring terms of order® or higher, we get,

A =2esinfy + Z e? sin 26, (4)

which is the required correction term.

APPENDIX B: POSITION OF THE MOON

Here we determine Moon'’s position for any given epoch, sstyJanuary 2007, 00 UT, starting from
the initial epoch 1st January 2000, 00 UT.

Moon moves in a geocentric orbit of mean eccentrieity 0.0549 and a tropical revolution period
of T' = 27.32158 days, corresponding to a mean angular spage- 13.17640°/day with respect
to the vernal equinox. From the initial valug = 211.7°, Moon’s mean longitude is calculated as,
Ao = 211.7+ 13.17640 x 2557 = 63.8°.

But before we correct for the ellipticity of the Moon’s orpite need to consider that unlike in
a planetary orbit where the position of the perihelion cteasg slowly with time that it can be
considered constant fat50 years, in Moon’s orbit the perigee rotates forward with eedfio the
vernal equinox with a period of 3231.4 days ®.85 years), corresponding to an angular speed
0.11141°/day. With an initial value 083.3°, the longitude of the perigee, on January 1, 2007, 00:00
UT is then given by), = 83.3 + 0.11141 x 2557 = 8.2°.

From this we get Moon’s mean anomaly for a circular motiordgss Ao — A, = 55.6°.

We can now use Equation (4) in the same way as for the plangsttthe correction for the
ellipticity A6 = 5.4°, which givesA = )y + Af = 69.2°. However, the value obtained thus is
accurate only up te- 2°. The reason being that there is an important perturbatiom, tenown as
Evection, which depends upon Moon’s mean elongatigas well as its mean anomaly, and has
a value, Af., = 1.27°sin(2¢g — 0y). Substituting for)y = 63.8 — 280.2 + 360.0 = 143.6°, we
get,Af,, = 1.27sin(2 x 143.6 — 55.6) = —1.1°.

Thus Moon’s corrected longitude on 1st January, 2007, 00D& A = 69.2 — 1.1 = 68.1°, and
the elongation) calculated thence i47.9°, well within a degree of the ephemeris values of 67.4
and147.2° respectively.

There is another feature of the Moon’s motion which has actlibearing on the time of occur-
rences of solar and lunar eclipses. Moon'’s orbit is incliteethe ecliptic with a mean inclination of
5.16°, intersecting it at points known as the ascending and ddsogmodes. The ascending node

12
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is the one where Moon crosses the ecliptic in a northwarctiine. Gravitational pull of the Sun
causes a precession of the axis of Moon’s orbital plane ardhat of the ecliptic with a tropical
period of 6798.4 days«( 18.6 years). Consequently the nodes of the Moon'’s orbit haveragetde
motion of ~ 0.05295°/day around the ecliptic. With an initial value b25.1° on 1st January 2000,
00 UT, the longitude of the ascending node for the epoch Jgariye2007, 00:00 UT is given by,
Q = 125.1 — 0.05295 x 2557 = —10.3°, i.e., 349.7°, while the descending node i80° away at
169.7°.

A solar or lunar eclipse can only occur when Sun’s longitigdeldse to that of one of the nodes
and the Moon’s elongation is either 0° (solar eclipse) or- 180° (lunar eclipse).

APPENDIX C: THE ASTRONOMICAL CALENDAR

In all the examples presented above, the calculations wadersing a scientific calculator. This
procedure is appropriate for quickly getting some occadiplanetary positions while locating these
objects in the sky. However if one wants to do many computatisay calculate positions for all
planets for each day of the year, the process becomes teatidube chances of a numerical mistake
occurring in manual calculations become high. Since thegs®of computing planetary positions is
a repetitive one, it could then be much more convenient tevarsimple computer programme using
the algorithm described above to carry out the calculatidis have written such a programme to
compute positions of all the planets as well as of the Moorefieh day of a specified year and
present the results in the form of an astronomical calendachwgives elongations of different
planets for all days of that particular year.

The calendar allows us to locate the naked-eye planets skihi®r any time of the corresponding
year. The horizontal axis displays the elongation in hoorse(hour corresponds t%°), and is
centred around the Sun, which by definition has a zero el@gathe vertical axis marks the day
of the year. Thus to locate a planet on any given date of the wesaselect that date on the vertical
axis and then move in a horizontal direction till we find thargt. From the elongation of the planet
we can easily locate it in the sky.

We can use the calendar to find what all planets are above timhat any time of the day.
Suppose for a given date of the year we want to locate all [dansible in the sky at, say, dawn.
The Sun, ab” elongation, will at that time be just rising near the eastesrizon and the-12"
elongation point in the calendar will be near the westerrizioor The intermediate elongation
points will be at in-between positions on the celestial lsghere, e.g., the-6" elongation point
will be close to the culmination point (the point nearesttie zenith). This way going along the
horizontal direction frond” to —12" at the chosen date, we will find the celestial position of all
planets visible in the morning sky on that date. At dusk, sitih setting near the western horizon,
the visible sky will stretch eastward frofi# to 12" elongation on the calendar. Similarly one can
locate planets on the celestial sphere at other hours oiftige At midnight, with culmination point
being at12” (which is the same as12"), the sky towards west will stretch froir2” to 6" and that
towards east will be from-12" to —6" elongation, while at 9 p.m., with the culmination point at
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Figure 4. Astronomical calendar for locating planets in the sky fa ylear 2010

9", the celestial hemisphere will stretch west to east bet@éemd—9” elongations.

The slant dotted lines running across the calendar from teestst almost every month represent
Moon’s path. Their dates of intersection with the Sun’s path” elongation mean new Moon
days, while intersections with the midnight line ¢at2" elongation) imply full Moon days, with
the intermediate phases at the in-between dates. Theifestih the calendar represent the relative
positions of the ascending and descending nodes of Moohitabplane. Intersection of the sun’s
path (at0” elongation) or of the midnight line (at12") with one of the lines of nodes, indicate
the possibility of occurrence of an eclipse. In the neighthood of these intersection points, at the
time of a new moon there might possibly occur a solar eclipsiéevat the full moon time there is a
possibility of a lunar eclipse.

From the astronomical calendar for the year 2010, showndarEi4, we see that close to the
intersection point of Sun’s path with the ascending nodestieenew Moon around 15th of January,
which could thus be a solar eclipse. Actually because ofithigdd resolution of the display, the
calendar can only be used as a quick indicator. For a betteracy, one should go back to the
actual tabulated data from which the calendar has beenafexer~rom our computed data for the
longitudes of the Sun, Moon and the lines of nodes for the 820, we find that the possible dates
for the solar eclipses in the year 2010 are 15th January ahdtily, while lunar eclipses may occur
on 26th June and 21st of December. From NASA's eclipse weljgjitve find that there indeed are
four eclipses in the year 2010 on these very dates.
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