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Abstract. In this paper, we describe a very simple method to calculate the positions of the planets in the
sky. The technique used enables us to calculate planetary positions to an accuracy of1◦ for ±50 years from
the starting epoch. Moreover, this involves very simple calculations and can be done using a calculator. All
we need are the initial specifications of planetary orbits for some standard epoch and the time periods of their
revolutions.

1. INTRODUCTION

The night-sky fascinates people. To be able to locate a planet in the night sky is something that
thrills people. Since the planets move with respect to the background stars and continuously change
their positions in the sky, locating them in the sky could appear be a non-trivial task. It is a general
notion that calculating the planetary positions is a very tedious task, involving a lot of complicated
mathematical equations and computer work. However, to be able to locate planets in the sky one
does not really need very accurate positions. After all, Kepler’s laws, which describe planetary orbits
reasonably well, are mathematically simple. Hence, one could use Kepler’s law to predict planetary
positions in which mutual influence of planets is not considered. Thereby an accuracy of∼ 1◦ in
planetary positions would be achieved.

In this project, we employ a very simple method to calculate the positions of the planets. The
technique we use enables us to calculate planetary positions to an accuracy of1◦ for ±50 years
from the starting epoch. Moreover, this involves very simple calculations and can be done using
a calculator. All we need are the initial specifications of planetary orbits for some standard epoch
and their time periods of revolution. Although accurate planetary positions could be obtained easily
from the internet, yet it is very instructive and much more satisfying to be able to calculate these
ourselves, starting from basic principles and using a simple procedure.

Our first step would be to calculate the positions of all the planets (including Earth) in their orbits
around the Sun. We initially consider the planets to revolvearound the Sun in uniform circular
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motions. Knowing their original positions for the startingepoch, we calculate their approximate
positions for the intended epoch. As a consequence of this approximation there will be an error
since the actual orbits are elliptical. To get more accuratepositions, we require some corrections,
which are derived in Appendix A. These corrections account for the elliptical motion.

Knowing the positions of the planets around the Sun, we can then use simple co-ordinate geometry
to transform their position with respect to an observer on Earth. Our task becomes simple since the
orbits of all planets more or less lie in the same plane, viz. the ecliptic plane.

In this project, we calculate the motion of naked-eye planets only, although the procedure can be
applied equally well for the remaining planets also.

2. CELESTIAL CO-ORDINATES

All celestial bodies in the sky, including stars, planets, Sun, Moon and other objects, appear to lie on
the surface of a giant sphere called the Celestial Sphere. Due to Earth’s eastward rotation around its
axis, the celestial sphere appears to rotate westward around Earth in 24 hours. Infinitely extending

Figure 1. Celestial sphere showing the ecliptic co-ordinate system [5]
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the plane of Earth’s equator into space it appears to intersect the celestial sphere to form a circle,
which is called the Celestial Equator.

As Earth moves around the Sun - as seen from the Earth - Sun changes its position with respect
to the background stars. The path that Sun takes on the celestial sphere is called the “Ecliptic”.
The familiar Zodiac constellations are just divisions of the ecliptic into twelve parts. Since all other
planets revolve around Sun in nearly the same plane, they also appear to move on the ecliptic.

The celestial equator is inclined to the ecliptic by23.5◦. The points of intersections of these two
circles on the celestial sphere are called the “Vernal Equinox” and the “Autumnal Equinox”. The
Vernal Equinox, also known as the Spring Equinox, is the point on the celestial sphere that the Sun
passes through around 21st of March every year.

In astronomy, an epoch is a moment in time for which celestialco-ordinates or orbital elements
are specified, while a celestial co-ordinate system is a co-ordinate system for mapping positions in
the sky. There are different celestial co-ordinate systemseach using a co-ordinate grid projected on
the celestial sphere. The co-ordinate systems differ only in their choice of the fundamental plane,
which divides the sky into two equal hemispheres along a great circle . Each co-ordinate system is
named for its choice of fundamental plane.

The ecliptic co-ordinate system is a celestial co-ordinatesystem that uses the ecliptic for its funda-
mental plane. The longitudinal angle is called the eclipticlongitude or celestial longitude (denoted
λ), measured eastwards from0◦ to 360◦ from the vernal equinox. The latitudinal angle is called
the ecliptic latitude or celestial latitude (denotedβ), measured positive towards the north. This
coordinate system is particularly useful for charting solar system objects.

The Earth’s axis of rotation precesses around the ecliptic axis with a time period of about 25800
years. Due to this, the equinoxes shift westwards on the ecliptic. Due to the westward shift of the
Vernal Equinox, which is the origin of the ecliptic co-ordinate system, the ecliptic longitude of the
celestial bodies increases by an amount360/258 ∼ 1.4◦ per century.

Most planets, dwarf planets, and many small solar system bodies have orbits with small inclina-
tions to the ecliptic plane, and therefore their ecliptic latitudeβ is always small. Due of the planets’
small deviation from the plane of the ecliptic, the eclipticlongitude may alone suffice to locate
planets in the sky.

3. CALCULATING PLANETARY POSITIONS

3.1 HELIOCENTRIC CIRCULAR ORBIT

Here, we consider the planets to move around Sun in circular orbits with a uniform angular speed.
The initial values of mean longitudes (λi) of the planets given in Table 1 are for 1st of January,
2000 A.D., 00:00 UT (adapted from [1]). In Table 1, we have also listed the period,T (days), of
revolution of the planets [2]. Then, the mean angular speed is give by,ω0 = 360/T (◦/day). We
denote the Mean Longitude of the planets in the imaginary circular orbit for subsequent dates asλ0.
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Table 1. Mean longitudeλ0 on 01/01/2007, 00:00 UT from the initial valueλi

Planet λi (◦) T (days) ω0 (◦/day) λ0 (◦) λe (◦) Error (◦)

Mercury 250.2 87.969 4.09235 274.3 268.7 +5.6

Venus 181.2 224.701 1.60213 317.8 317.8 0.0

Earth 100.0 365.256 0.98561 100.2 100.2 0.0

Mars 355.2 686.980 0.52403 255.1 244.5 +10.6

Jupiter 34.3 4332.59 0.08309 246.8 242.6 +4.2

Saturn 50.1 10759.2 0.03346 135.7 140.2 -4.5

We now demonstrate how to calculateλ0 for Mars on 1st January 2007.

λi of Mars on 01.01.2000 at 00:00 UT = 355.2◦ .
No. of days b/w 01.01.2000 and 01.01.2007 = 2557 days.
Mean angle traversed duration this period= 0.52403× 2557 = 1339.9◦.
So,λ0 on 01.01.07 at 00:00 UT= 355.2 + 1339.9 = 255.1◦.1

In the same way, mean longitudes of all planets have been calculated in Table 1 for the same
epoch. For a comparison, we have listed the actual longitudevalues (λe) from Indian Ephemeris [4]
for that epoch. Here, we see, from the error in column 7, that one has to correct for the elliptical
shape of the orbit, at least for some of the planets.

3.2 HELIOCENTRIC ELLIPTICAL ORBIT

Before we make corrections for the elliptical shape of the orbit we need to know the orientation of the
ellipse within the ecliptic and that can be defined by the longitude of the perihelion.2 Longitudinal
distance of the planet from the perihelion along the elliptical orbit is known as its Anomaly (denoted
by θ), while angular distance of mean position of planet with respect to the perihelion is called
the Mean Anomaly (denoted byθ0). As has been discussed in Appendix A, there is a one–to–one
correspondence betweenθ andθ0.

The correction∆θ to be added toθ0 (Equation 4) is,

∆θ = 2 e sin θ0 +
5

4
e2 sin 2θ0

wheree is the eccentricity of the ellipse.

1We have taken out the integer number of complete orbits.
2Perihelion is the point on the elliptical orbit closest to the Sun, while aphelion is the point farthest from Sun.
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Table 2. Corrected longitudeλ on 01/01/2007, 00:00 UT

Planet λ0 (◦) λp (◦) θ0 (◦) e ∆θ (◦) θ (◦) λ (◦) λe (◦) Error (◦)

Mercury 274.3 77.5 196.8 0.2056 -5.1 191.7 269.3 268.7 0.6

Venus 317.8 131.6 186.2 0.0068 -0.1 186.1 317.8 317.8 0.0

Earth 100.2 102.9 357.3 0.0167 -0.1 357.2 100.2 100.2 0.0

Mars 255.1 336.1 279.0 0.0934 -10.7 268.3 244.5 244.5 0.0

Jupiter 246.8 14.3 232.4 0.0485 -4.2 228.2 242.6 242.6 0.0

Saturn 135.7 93.1 42.6 0.0555 4.5 47.1 140.3 140.2 0.1

Let’s consider Mercury’s position on 01/01/07 at 00:00 UT.

Mean longitude,λ0 = 274.3◦

Perihelion Longitude,λp = 77.5◦

Mean anomaly,θ0 = λ0 − λp = 196.8◦

1st order correction,2e sin θ0 = 2 × 0.2056× sin(196.8◦) = −0.11885 rad= −6.8◦

2nd order correction,5
4
e2 sin 2θ0 = 1.25 × (0.2056)2 × sin(33.6◦) = 0.02924 rad= 1.7◦

∆θ = (1st order correction) + (2nd order correction)= −6.8 + 1.7 = −5.1◦

Anomaly,θ = θ0 + ∆θ = 196.8 − 5.1 = 191.7◦

Precession of vernal equinox in 7 yrs= 7 × 360/25800 = 0.1◦.
λ = λ0 + ∆θ + precession of vernal equinox= 274.3 − 5.1 + 0.10 = 269.3◦.

We can obtain corrections for the elliptical orbits of the remaining planets in the same way. In
Table 2, We have listed values of the longitude of perihelion(λp) and eccentricity (e) for all planets,
taken from [1]. Also tabulated are the calculated anomaly (θ) and longitude (λ). From Table 2, we
see that the errors now are indeed smaller than 1◦.

3.3 GEOCENTRIC PERSPECTIVE

Until now, we have calculated the longitudesλ of the planets on the celestial sphere centered on the
Sun. We can also calculate radiir of their orbits around the sun, giving their positions in polar form
(r, λ). To get the positions of planets on the celestial sphere centered on the Earth, we convert the
polar co-ordinates into rectangular form and after shifting the origin from Sun to Earth, we change
them back into polar form.

For converting into a rectangular form, we have to decide upon the direction of the X and Y axes.
We assume X to be in the positive direction along the line joining the Sun to the Vernal Equinox,
and Y to be perpendicular to X in the ecliptic plane in such a way that the longitude is a positive
angle.
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3.4 AN EXAMPLE

As an example, this procedure is demonstrated for Mercury’sposition on 01/01/07 at 00:00 UT.

1 HELIOCENTRIC CO-ORDINATES

Distance,r, of Mercury from Sun can be obtained from anomalyθ as,

r =
a(1 − e2)

1 + e cos θ
= 0.464A.U.,

where a = 0.387A.U. is the length of semi–major axis of its elliptical orbit. Thus heliocentric
polar co-ordinates of Mercury are (0.464 A.U., 269.3◦). Then we can get heliocentric rectangular
co-ordinates of Mercury as,

Xh = r cos(λ) = −0.006 A.U.
Yh = r sin(λ) = −0.464 A.U.

Similarly we get heliocentric rectangular co-ordinates ofEarth as,

X0 = −0.174 A.U.
Y0 = 0.968 A.U.

2 GEOCENTRIC CO-ORDINATES

Geocentric rectangular co-ordinates of Mercury then are

Xg = Xh −X0 = 0.168 A.U.
Yg = Yh − Y0 = −1.432 A.U.

Converting these into polar form, we get the geocentric distance and longitude as,

rg =
√

(X2

g + Y 2

g ) = 1.442 A.U.
λg = tan−1(Yg/Xg) = 276.7◦.

We give the calculated geocentric longitudes, on 01.01.07 at 00:00 UT, of various planets in
Table 3. Comparing with the geocentric longitudes from ephemerisλge, it can be seen that the
errors are much less than1◦. In the Earth/Sun row in Table 3,rg, λg andλge are the geocentric
values for the Sun’s position. The position of Sun on the celestial sphere, as seen from Earth, is in a
direction exactly opposite to that of Earth as seen from the Sun. Therefore the geocentric longitude
of Sun is the heliocentric longitude of Earth plus 180◦.
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Table 3. Geocentric longitudeλg on 01/01/2007, 00:00 UT

Planet a (A.U.) e r (A.U.) λ (◦) rg (A.U.) λg (◦) λge (◦) Error (◦)

Mercury 0.387 0.2056 0.464 269.3 1.44 276.7 276.5 0.2

Venus 0.723 0.0068 0.728 317.8 1.62 296.1 296.1 0.0

Earth/Sun 1.00 0.0167 0.983 100.2 0.983 280.2 280.2 0.0

Mars 1.52 0.0934 1.51 244.5 2.38 258.4 258.4 0.0

Jupiter 5.20 0.0485 5.36 242.6 6.17 248.2 248.2 0.0

Saturn 9.55 0.0555 9.17 140.3 8.45 144.6 144.5 0.1

We have ignored any perturbations on the motion of a planet due to the effect of other planets
which may distort its elliptical path. We are able to get the accuracy of< 1◦ for long periods (±50

years) because most of the terms ignored in the heliocentriclongitude calculations are periodic in
nature and do not grow indefinitely with time (see e.g., [3]).The other parameters characterizing
the elliptical orbit, like the longitude of the perihelion,semi–major axis and eccentricity etc. change
so slowly with time that for the accuracy we are interested in, these can be considered constant for
±50 years.

4. LOCATING PLANETS IN THE SKY

Now that we have calculated the geocentric longitudes of theplanets, we are in a position to locate
them in the sky. Any one familiar with the Zodiac constellations could locate a planet from its
position in the constellation in which it lies. The eclipticis divided into 12 Zodiac signs – Aries,
Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius, Pisces. The
Vernal equinox, at zero ecliptic longitude, is the start of the first Zodiac sign and is also known
as the First Point of Aries. But there is a caveat attached. Because of the precession the vernal
equinox has shifted westward by almost the full width of a constellation in the last∼ 2000 years
since when the Zodiac signs and constellation were perhaps first identified. As a consequence, the
First Point of Aries now lies in the constellation Pisces. For example, on 01/01/2007, geocentric
longitude276.7◦ of Mercury implies it is in the 10th Zodiac sign Capricorn, but actually lies in
the Sagittarius constellation, taking into account the shift by one constellation due to precession.
There are further complications. The twelve constellations are not all of equal length of arc along
the ecliptic longitude. Moreover there is another constellation, viz. Ophiuchus, through which the
ecliptic passes. However these complications are somewhatset aside by the fact that there are only
about half a dozen stars in the Zodiac with an apparent brilliance comparable to the naked–eye
planets, therefore with some familiarity of the night-sky,one could locate the planets easily from
their geocentric longitude values. It further helps to remember that unlike stars, the planets, because
of their large angular sizes, do not twinkle.

For a more precise location of a planet we can calculate its relative angular distance from the Sun
along the ecliptic.
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Table 4. Elongations of the planets on 01/01/2007

Planet λe(
◦) ψ(◦) Rise Time ψ(◦) Setting Time

at 05:30 IST Before Sunrise at 17:30 IST After Sunset

Sun 280.2 - - - -

Mercury 276.7 -3.5 0h14m -3.2 -

Venus 296.1 15.9 - 16.0 1h04m

Mars 258.4 -21.8 1h27m -21.9 -

Jupiter 248.2 -32.0 2h08m -32.4 -

Saturn 144.6 -135.6 9h02m -136.2 -

The difference between the geocentric positions of a planetand Sun (Table 4) is called the elon-
gation (ψ) of the planet and it tells us about planet’s position in the sky with respect to that of the
Sun. The longitude increases eastwards, therefore, if the longitude of the planet is greater than that
of the Sun, then the planet lies to the east of the Sun. That means, in the morning the Sun will rise
before the planet but in the evening the planet will be setting after the Sun. So the planet will be
visible in the evening sky in the west. On the other hand, if the geocentric longitude of the planet
is smaller than that of the Sun, it will rise before the Sun andwill be visible in the morning in the
eastern sky.

Figure 2. A schematic representation of the elongations of planets atthe times of

sunrise and sunset on 1st January, 2007
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In Table 4, positions of planets with respect to Sun on 01.01.07 are given for 00:00 UT, which
corresponds to 05:30 IST (Indian Standard Time). For example, the geocentric longitude of Mars
with respect to Sun is258.4 − 280.2 = −21.8◦. Thus Mars has a western elongation∼ 22◦ on
01.01.07, 05:30 IST.

As Earth completes a rotation in 24 hours, the westward motion of the sky is at a rate15◦/ hour.
This rate is strictly true for the celestial equator, but we can use this as an approximate rotation rate
even for the ecliptic, which is inclined at a23.5◦ to the equator. Therefore Mars will rise22/15 ∼

about one and half hour before the Sun.
We have also tabulated elongations of the planets for the same date but at 17:30 IST. Note that this

corresponds to 12:00 UT and there is a change in the elongation values during this half a day due
to shifts in the geocentric longitudes of the planets and thesun. Venus with an eastern elongation
∼ 16◦ on that evening, will be setting a little more than an hour after the sunset. This way, one can
easily locate the planets in the sky from their elongations.

Figure 2 is a schematic representation of the relative positions of the planets and the sun in the
morning and evening of 1st January, 2007.

5. CONCLUSIONS

It is a general notion that calculation of position of planets in the night sky is a difficult job, which
can be accomplished only by complex scientific computations, using fast computers. The motive
of this project has been to bring out the fact that such complex and accurate computations are not
always really necessary. One can calculate the position of planets using the method derived here and
get the thrill of finding the planet at the predicted positionin the night sky.

We have been able to obtain the position of planets within an accuracy of1◦, using a calculator.
This method can be used to reckon planetary positions up to±50 years of the starting epoch.
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APPENDIX A: CORRECTION FOR THE ORBITAL ELLIPTICITY

We compute the correction for motion of a planet in an actual elliptical orbit from that in an imagi-
nary circular orbit. Period of revolution in circular orbitis taken to be exactly the same as that in the
elliptical orbit. The origin of the mean longitude in circular orbit is chosen such thatλ0 coincides
with the longitudeλ of the planet when it is at the perihelion in its elliptical orbit. For mathematical
convenience, we taket = 0 at that instant. Thenλ0(0) = λ(0). Let λp be the longitude of the
perihelion of the planet’s elliptical orbit. We subtract theλp from λ0 andλ to obtain what is called

9



Tanmay Singal and Ashok k. Singal

Figure 3. A schematic diagram of the planet in circular and ellipticalmotion

the “mean anomaly” and “anomaly” respectively (denoted here by θ0 andθ, respectively) of the
planet. Then

Mean Anomaly,θ0 = λ0 - λp,
Anomaly,θ = λ - λp.
Thenθ0(0) = θ(0)

In circular motion, the angular speed of the planet is constant. However, in the elliptical motion,
the angular speed of the planet is not constant.

Let a timet has passed aftert = 0. Then, the change inθ0 of the planet isω0t whereas the change
in θ of the planet won’t be the same because of the variation in theangular speed along elliptical
trajectory.

Let ∆θ(t) = θ(t) - θ0(t).
We know thatθ0(t) andθ(t) are periodic by the same time interval,T , asT is the time period of

revolution in both the cases (elliptical and circular motion). Hence, all value ofθ0(t) andθ(t) repeat
after a time period of T. Hence,θ0(t) andθ(t) have a one–to–one relation. Hence,∆θ also repeats
after timeT . The uniform circular motion thus is a useful approximationbecause the error∆θ is
periodic with time and does not keep accumulating with time to grow to very large values.

To find the correction, first consider an elliptical orbit of aplanet around the Sun as shown in
Figure 3. We use the equation of the ellipse in polar co-ordinates (r, θ) whereθ is the anomaly. The
equation of the ellipse then is,
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r =
l

1 + e cos θ
=

a(1 − e2)

1 + e cos θ
(1)

wherel = a(1 − e2) is the semi–latus rectum witha as the semi–major axis ande the eccentricity
of the ellipse. The semi–minor axis of the ellipse isb = a

√

(1 − e2).
Now, total area of the ellipseA = πab is swept inT , the time period of revolution. From Kepler’s

second law we know that the rate of area swept out by the position vector of planet (with respect to
Sun) is a constant. Therefore the rate of area swept is,

dA

dt
=
r2

2

dθ

dt
=
πab

T

Substituting from Equation (1), we get

2π

T
=

(1 − e2)
3

2

(1 + e cos θ)2
dθ

dt

We notice that2π/T is nothing but the mean angular speedω0. Therefore

θ0(t) =

∫ t

0

ω0 dt =

∫ t

0

(1 − e2)
3

2

(1 + e cos θ)2
dθ (2)

We want to get the equation in the form,θ = θ0 + ∆θ, so that by adding the longitude of the
perihelion on both sides of the equation, we could get the relation between the correct longitudeλ
and the mean longitudeλ0.

A direct integration of Equation (2) may be very complicated. But we can expand the integrand as
a series and integrate only a few first most significant terms.A binomial series expansion is possible
because the eccentricity of an ellipse,e < 1. Also, during the expansion we drop terms of ordere3

or higher.

θ0(t) =

∫ t

0

(1 −
3

2
e2 + · · ·)(1 − 2 e cos θ + 3 e2 cos2 θ · · ·) dθ

After integration we get,

θ0 = θ − 2 e sin θ +
3

4
e2 sin 2θ + · · ·

which can be written as

∆θ = θ − θ0 = 2 e sin θ −
3

4
e2 sin 2θ + · · · (3)

However we want the r.h.s. of Equation (3) to be expressed in terms ofθ0. For that we can
substituteθ = θ0 + ∆θ on the r.h.s. to get,

∆θ = 2 e sin(θ0 + ∆θ) −
3

4
e2 sin[2(θ0 + ∆θ)] + · · ·
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Expanding in powers of∆θ and neglecting terms of ordere (∆θ)2, e2 ∆θ and higher we get,

∆θ (1 − 2 e cos θ0) = (2 e sin θ0 −
3

4
e2 sin 2θ0),

or

∆θ = (2 e sin θ0 −
3

4
e2 sin 2θ0) (1 − 2 e cosθ0)

−1.

Again Expanding in powers ofe and ignoring terms of ordere3 or higher, we get,

∆θ = 2 e sin θ0 +
5

4
e2 sin 2θ0 (4)

which is the required correction term.

APPENDIX B: POSITION OF THE MOON

Here we determine Moon’s position for any given epoch, say, 1st January 2007, 00 UT, starting from
the initial epoch 1st January 2000, 00 UT.

Moon moves in a geocentric orbit of mean eccentricitye = 0.0549 and a tropical revolution period
of T = 27.32158 days, corresponding to a mean angular speedω0 = 13.17640◦/day with respect
to the vernal equinox. From the initial valueλi = 211.7◦, Moon’s mean longitude is calculated as,
λ0 = 211.7 + 13.17640× 2557 = 63.8◦.

But before we correct for the ellipticity of the Moon’s orbit, we need to consider that unlike in
a planetary orbit where the position of the perihelion change so slowly with time that it can be
considered constant for±50 years, in Moon’s orbit the perigee rotates forward with respect to the
vernal equinox with a period of 3231.4 days (∼ 8.85 years), corresponding to an angular speed
0.11141◦/day. With an initial value of83.3◦, the longitude of the perigee, on January 1, 2007, 00:00
UT is then given by,λp = 83.3 + 0.11141× 2557 = 8.2◦.

From this we get Moon’s mean anomaly for a circular motion as,θ0 = λ0 − λp = 55.6◦.
We can now use Equation (4) in the same way as for the planets toget the correction for the

ellipticity ∆θ = 5.4◦, which givesλ = λ0 + ∆θ = 69.2◦. However, the value obtained thus is
accurate only up to∼ 2◦. The reason being that there is an important perturbation term, known as
Evection, which depends upon Moon’s mean elongationψ0 as well as its mean anomalyθ0, and has
a value,∆θev = 1.27◦ sin(2ψ0 − θ0). Substituting forψ0 = 63.8 − 280.2 + 360.0 = 143.6◦, we
get,∆θev = 1.27 sin(2 × 143.6 − 55.6) = −1.1◦.

Thus Moon’s corrected longitude on 1st January, 2007, 00:00UT is λ = 69.2− 1.1 = 68.1◦, and
the elongationψ calculated thence is147.9◦, well within a degree of the ephemeris values of 67.4
and147.2◦ respectively.

There is another feature of the Moon’s motion which has a direct bearing on the time of occur-
rences of solar and lunar eclipses. Moon’s orbit is inclinedto the ecliptic with a mean inclination of
5.16◦, intersecting it at points known as the ascending and descending nodes. The ascending node
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is the one where Moon crosses the ecliptic in a northward direction. Gravitational pull of the Sun
causes a precession of the axis of Moon’s orbital plane around that of the ecliptic with a tropical
period of 6798.4 days (∼ 18.6 years). Consequently the nodes of the Moon’s orbit have a retrograde
motion of∼ 0.05295◦/day around the ecliptic. With an initial value of125.1◦ on 1st January 2000,
00 UT, the longitude of the ascending node for the epoch January 1, 2007, 00:00 UT is given by,
Ω = 125.1 − 0.05295 × 2557 = −10.3◦, i.e.,349.7◦, while the descending node is180◦ away at
169.7◦.

A solar or lunar eclipse can only occur when Sun’s longitude is close to that of one of the nodes
and the Moon’s elongation is either∼ 0◦ (solar eclipse) or∼ 180◦ (lunar eclipse).

APPENDIX C: THE ASTRONOMICAL CALENDAR

In all the examples presented above, the calculations were made using a scientific calculator. This
procedure is appropriate for quickly getting some occasional planetary positions while locating these
objects in the sky. However if one wants to do many computations, say calculate positions for all
planets for each day of the year, the process becomes tediousand the chances of a numerical mistake
occurring in manual calculations become high. Since the process of computing planetary positions is
a repetitive one, it could then be much more convenient to write a simple computer programme using
the algorithm described above to carry out the calculations. We have written such a programme to
compute positions of all the planets as well as of the Moon foreach day of a specified year and
present the results in the form of an astronomical calendar which gives elongations of different
planets for all days of that particular year.

The calendar allows us to locate the naked-eye planets in thesky for any time of the corresponding
year. The horizontal axis displays the elongation in hours (one hour corresponds to15◦), and is
centred around the Sun, which by definition has a zero elongation. The vertical axis marks the day
of the year. Thus to locate a planet on any given date of the year, we select that date on the vertical
axis and then move in a horizontal direction till we find the planet. From the elongation of the planet
we can easily locate it in the sky.

We can use the calendar to find what all planets are above the horizon at any time of the day.
Suppose for a given date of the year we want to locate all planets visible in the sky at, say, dawn.
The Sun, at0h elongation, will at that time be just rising near the easternhorizon and the−12h

elongation point in the calendar will be near the western horizon. The intermediate elongation
points will be at in-between positions on the celestial hemisphere, e.g., the−6h elongation point
will be close to the culmination point (the point nearest to the zenith). This way going along the
horizontal direction from0h to −12h at the chosen date, we will find the celestial position of all
planets visible in the morning sky on that date. At dusk, withsun setting near the western horizon,
the visible sky will stretch eastward from0h to 12h elongation on the calendar. Similarly one can
locate planets on the celestial sphere at other hours of the time. At midnight, with culmination point
being at12h (which is the same as−12h), the sky towards west will stretch from12h to 6h and that
towards east will be from−12h to −6h elongation, while at 9 p.m., with the culmination point at
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Figure 4. Astronomical calendar for locating planets in the sky for the year 2010

9h, the celestial hemisphere will stretch west to east between3h and−9h elongations.
The slant dotted lines running across the calendar from westto east almost every month represent

Moon’s path. Their dates of intersection with the Sun’s pathat 0h elongation mean new Moon
days, while intersections with the midnight line (at±12h elongation) imply full Moon days, with
the intermediate phases at the in-between dates. The faint lines in the calendar represent the relative
positions of the ascending and descending nodes of Moon’s orbital plane. Intersection of the sun’s
path (at0h elongation) or of the midnight line (at±12h) with one of the lines of nodes, indicate
the possibility of occurrence of an eclipse. In the neighbourhood of these intersection points, at the
time of a new moon there might possibly occur a solar eclipse while at the full moon time there is a
possibility of a lunar eclipse.

From the astronomical calendar for the year 2010, shown in Figure 4, we see that close to the
intersection point of Sun’s path with the ascending node there is new Moon around 15th of January,
which could thus be a solar eclipse. Actually because of the limited resolution of the display, the
calendar can only be used as a quick indicator. For a better accuracy, one should go back to the
actual tabulated data from which the calendar has been generated. From our computed data for the
longitudes of the Sun, Moon and the lines of nodes for the year2010, we find that the possible dates
for the solar eclipses in the year 2010 are 15th January and 11th July, while lunar eclipses may occur
on 26th June and 21st of December. From NASA’s eclipse web site [6] we find that there indeed are
four eclipses in the year 2010 on these very dates.
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